
z/OS Communications Server

IPv6 Network and Application Design
Guide
Version 1 Release 4

SC31-8885-00

���

z/OS Communications Server

IPv6 Network and Application Design
Guide
Version 1 Release 4

SC31-8885-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 137.

First Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM® publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

IBMLink™:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xi

About this document . xiii
Who should use this document xiii
Where to find more information xiii

Where to find related information on the Internet xiii
Accessing z/OS licensed documents on the Internet xiv
Using LookAt to look up message explanations xiv
Using LookAt to look up message explanations xv
How to contact IBM service xv
z/OS Communications Server information xvi

Part 1. IPv6 Overview . 1

Chapter 1. Introduction . 3
Expanded routing and addressing 3
Hierarchical addressing and routing infrastructure 4
Simplified IP header format . 4
Improved support for options . 4
Address autoconfiguration . 4
New protocol for neighbor node interaction 5
Comparison of IPv6 and IPv4 characteristics 6
Dual-mode stack support . 7

Chapter 2. IPv6 addressing . 9
Textual representation of IPv6 addresses. 9
Textual representation of IPv6 prefixes 10
IPv6 address space . 10
IPv6 addressing model . 11
Scope zones. 11
Categories of IPv6 addresses 12

Unicast IPv6 addresses. 12
Multicast IPv6 Addresses . 17
Anycast IPv6 Addresses . 19

Typical IPv6 addresses assigned to a node 19
IPv6 address states . 19

Tentative . 19
Deprecated . 20
Preferred . 20
Unavailable . 20

Chapter 3. IPv6 protocol . 21
Extension headers . 21
Fragmentation in an IPv6 network 21

Fragmentation and UDP/RAW 21
Path MTU discovery . 22
IPv6 routing . 22

Considerations for route selection 23
Considerations for multipath routes 23
How does a vary obey command affect routes? 23

ICMPv6 . 23

© Copyright IBM Corp. 2002 iii

Multicasting . 24
Multicast Listener Discovery (MLD) 24

Neighbor discovery (NeD) . 25
Router advertisements . 25
Redirect processing . 27
Duplicate Address Detection (DAD) 28
Address resolution . 28
Neighbor unreachability detection 29

Assigning IP addresses to interfaces 29
Stateless address autoconfiguration 29
IP address takeover following an interface failure 30
How to get addresses for VIPAs 31

Default address selection . 32
Default destination address selection 32
Default source address selection 34

Migration and coexistence . 35
How to enable IPv6 communication between IPv6 islands in an IPv4 world 35
How to enable end-to-end communication between IPv4 and IPv6

applications . 36
Considerations for configuring z/OS for IPv6 39
IPv6 stack support . 39

IPv4-only stack . 39
IPv6-only stack . 40
Dual-mode stack . 40

INET considerations . 40
IPv4-only stack . 40
Dual-mode IPv4/IPv6 stack 41

Common INET considerations 41
Enabling AF_INET6 support in a Common INET environment 41
Disabling AF_INET6 support in a Common INET environment 41
Supporting a mixture of dual-mode stacks and IPv4-only stacks 42
Configuration recommendations for a Common INET environment 43

Part 2. IPv6 enablement . 45

Chapter 4. Configuring support for z/OS V1R4 47
Before you begin . 47

Ensure important features are supported over IPv6 47
Assess automation and application impacts due to netstat and message

changes . 48
Determine how remote sites will connect to the local host 48
Avoid using IP addresses for identifying remote hosts 49
Considerations when using BIND parameter on PORT statement 49
Security considerations . 49
Application programming considerations 50

How to enable IPv6 support . 50
Enabling AF_INET6 support in z/OS Communications Server 52

Resolver . 52
Resolver configuration . 53
Resolver communications with the Domain Name System (DNS) 54

DNS . 54
Resolving names into IPv6 addresses 55
Resolving IPv6 addresses into names 55
DNS setup . 55

User exits . 56
Which applications started with inetd are IPv6 enabled?. 56

iv z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

What has to be changed? . 56
How does IPv6 affect SMF records? 56
How does IPv6 affect SNMP? 57
Monitoring the TCP/IP network 57

How does IPv6 affect Netstat? 57
How does IPv6 affect Ping and Traceroute? 59

Diagnosing problems. 59
How does IPv6 affect IPCS? 59
How does IPv6 affect packet and data tracing? 59

Chapter 5. Configuration recommendations 61
Connecting to an IPv6 Network 61
IPv6 address assignment . 61

Use stateless address autoconfiguration for physical interfaces 61
Use static VIPAs . 61

Update DNS definitions . 62
Include static VIPAs in DNS 62
Define both IPv4-only host names and IPv4/IPv6 host names. 62

Use source VIPA . 63
Define static routes to improve network path selection 63

Use subnet routes instead of host routes 63
Use the link-local address of gateway router 63
Effects of site renumbering on static routes 64

Connecting to non-local IPv4 locations 64
IPv6-only application access to IPv4-only application 64

Part 3. Application enablement . 65

Chapter 6. API support . 67
UNIX Socket APIs. 67

z/OS UNIX Assembler Callable Services 67
z/OS C sockets. 67

Native TCP/IP socket APIs . 68
Sockets Extended macro API 68
Sockets Extended Call Instruction API 68
REXX sockets . 68
CICS sockets . 68
IMS sockets . 68
Pascal API . 68
TCP/IP C/C++ Sockets . 68

Chapter 7. Basic Socket API extensions for IPv6 71
Introduction . 71
Design considerations . 71

Protocol families . 71
Address families . 71
Special IP addresses . 72

Name and address resolution functions 72
Protocol-independent nodename and service name translation 73
Socket address structure to host name and service name 78
Address conversion functions 79
Address testing macros. 79

Interface identification . 80
Socket options to support IPv6 (IPPROTO_IPV6 level) 80

Option to control sending of unicast packets 81
Options to control sending of multicast packets 81

Contents v

Options to control receiving of multicast packets 82
Socket option to control IPv4 and IPv6 communications 82
Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels 83

Chapter 8. Enabling an application for IPv6 85
Changes to enable IPv6 support 85
Support for unmodified applications 85

Application awareness of whether system is IPv6 enabled 85
Socket address (sockaddr_in) structure changes 88
Address conversion functions 88
Resolver API processing . 88
Special IPv6 addresses. 89
Passing ownership of sockets across applications using givesocket and

takesocket APIs. 89
Using multicast and IPv6 . 90
IP addresses may not be permanent 91
Including IP addresses in the data stream 91
Example of an IPv4 TCP server program 91
Example of the simple TCP server program enabled for IPv6 92

Chapter 9. Advanced socket APIs 95
Controlling the content of the IPv6 packet header 95

Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level) 95
Socket option to support ICMPv6 (IPPROTO_ICMPV6 level) 99

Using ancillary data on sendmsg() and recvmsg() 100
Interactions between socket options and ancillary data 101

Understanding hop limit options 101
Understanding options for setting the source address 102
Understanding options for specifying the outgoing interface 102

Why use RAW sockets? . 102
RAW protocol values . 103
Application visibility of IP headers 103
ICMP considerations . 103
Checksumming data . 104

Part 4. Advanced topics . 105

Chapter 10. Advanced concepts and topics 107
Tunneling . 107

Tunneling Overview. 107
Configured tunnels . 108
Automatic tunnels . 109
6to4 tunnels . 109
6over4 tunnels . 110

Application migration and coexistence overview 111
Application migration approaches. 113

Translation mechanisms . 113

Chapter 11. IPv6 support tables 117
IPv6 standards supported on z/OS V1R4 117
z/OS specific features . 117
Applications not enabled for IPv6 119

Appendix A. 121
Related protocol specifications (RFCs). 121

Internet Drafts . 128

vi z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Appendix B. 131
Information APARs . 131

Information APARs for IP documents 131
Information APARs for SNA documents 132
Other information APARs. 132

Appendix C. 135
Accessibility . 135

Using assistive technologies 135
Keyboard navigation of the user interface. 135

Notices . 137
Trademarks. 140

Index . 143
147

Communicating Your Comments to IBM 147

Contents vii

viii z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Figures

1. IPv6 address space . 4
2. Unicast address format . 13
3. Global unicast address format . 13
4. Link-local address format . 13
5. Link-local scope zones. 14
6. Site-local address format . 14
7. Site-local scope zones . 15
8. IPv4-mapped IPv6 address . 16
9. Interface ID format . 16

10. Multicast address format . 17
11. Flags in multicast address . 17
12. Communicating between IPv6 islands in an IPv4 world 35
13. Communicating between IPv4 and IPv6 applications 36
14. IPv6 application on dual-mode stack . 37
15. IPv4-only application on a dual-mode stack . 38
16. Mixing dual-mode and IPv4-only stacks . 43
17. z/OS socket APIs. 67
18. IPv4 TCP server program . 92
19. Simple TCP server program enabled for IPv6 . 93
20. Tunneling . 108
21. 6to4 address format . 110
22. 6over4 address format . 111
23. Dual-mode stack IP host . 112
24. Application communication on a dual-mode host 113

© Copyright IBM Corp. 2002 ix

x z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Tables

1. IPv4/IPv6 comparison . 6
2. Address type representation. 10
3. Multicast scope field values . 18
4. Source address selection . 35
5. IPv6 supported features for z/OS CS V1R4 . 47
6. IPv6 supported applications for z/OS CS V1R4. 47
7. sockaddr format for AF_INET . 72
8. sockaddr format for AF_INET6 . 72
9. Special IP addresses . 72

10. Getaddrinfo application capabilities 1 . 75
11. Getaddrinfo application capabilities 2 . 76
12. Address conversion functions . 79
13. Address testing macros . 79
14. Function calls . 80
15. Socket options for getsockopt() and setsockopt() 81
16. Using socket() to determine IPv6 enablement . 86
17. sockaddr structure changes . 88
18. Address conversion function changes . 88
19. Resolver API changes . 89
20. Special IPv6 address changes . 89
21. givesocket() and takesocket() changes . 90
22. Multicast options . 90
23. Sockets options at the IPPROTO_IPV6 level . 95
24. Ancillary data on Sendmsg() (Level = IPPROTO_IPV6). 96
25. Ancillary data on Recvmsg() (Level = IPPROTO_IPV6) 96
26. Sockets options at the IPPROTO_ICMPV6 level 99
27. Supported IPv6 standards on z/OS CS V1R4 . 117
28. Link-layer device support . 117
29. Virtual IP Addressing support . 118
30. Sysplex support . 118
31. IP routing functions . 118
32. Misc. IP/IF-layer functions . 118
33. Transport-layer functions . 119
34. Network management and accounting functions 119
35. Security functions . 119
36. V1R4 applications not enabled for IPv6 . 119
37. IP information APARs. 131
38. SNA information APARs . 132
39. Non-document information APARs . 133

© Copyright IBM Corp. 2002 xi

xii z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

About this document

This document contains information relating to the IPv6 protocol and the
implementation of the protocol on z/OS™ Communications Server Version 1
Release 4.

This document supports z/OS.e™.

Who should use this document
The reader of this document should be familiar with the IPv6 protocol.

Parts 1, 2, and 4 of this document are intended for programmers and system
administrators who are familiar with TCP/IP, MVS™, and z/OS UNIX®.

Part 3 is intended for application programmers.

Where to find more information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the documents in the z/OS Communications Server
(z/OS CS) library, along with related publications

Where to find related information on the Internet
z/OS

– http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

– http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

– http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

– http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

– http://www.redbooks.ibm.com/

IBM Systems Center flashes

– http://www-1.ibm.com/support/techdocs/atsmastr.nsf

RFCs

– http://www.ietf.org/rfc.html

RFC drafts

– http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:

© Copyright IBM Corp. 2002 xiii

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

xiv z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

How to contact IBM service

For immediate assistance, visit this Web site:
http://www.software.ibm.com/network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

About this document xv

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.software.ibm.com/network/commserver/support/

If you would like to provide feedback on this publication, see “Communicating Your
Comments to IBM” on page 147.

z/OS Communications Server information
This section contains descriptions of the documents in the z/OS Communications
Server library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

v In softcopy on CD-ROM collections.

Softcopy information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R4 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R4, in both BookManager® and PDF
formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R4 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication
IBM S/390® Redbooks™

Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server library
z/OS V1R4 Communications Server documents are available on the CD-ROM
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info
APARs). See “Information APARs” on page 131 for a list of the documents and the
info APARs associated with them.

v Info APARs for OS/390® documents are in the document called OS/390 DOC
APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

v Info APARs for z/OS documents are in the document called z/OS and z/OS.e
DOC APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Planning and migration:

xvi z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server:
SNA Migration

GC31-8774 This document is intended to help you plan for SNA, whether you
are migrating from a previous version or installing SNA for the
first time. This document also identifies the optional and required
modifications needed to enable you to use the enhanced
functions provided with SNA.

z/OS Communications Server:
IP Migration

GC31-8773 This document is intended to help you plan for TCP/IP Services,
whether you are migrating from a previous version or installing IP
for the first time. This document also identifies the optional and
required modifications needed to enable you to use the
enhanced functions provided with TCP/IP Services.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It describes
concepts of z/OS Communications Server’s support of IPv6,
coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning:

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC31-8775 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity with the
z/OS operating system, IP protocols, z/OS UNIX System
Services, and IBM Time Sharing Option (TSO) is recommended.
Use this document in conjunction with the z/OS Communications
Server: IP Configuration Reference.

z/OS Communications Server:
IP Configuration Reference

SC31-8776 This document presents information for people who want to
administer and maintain IP. Use this document in conjunction
with the z/OS Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC31-8777 This document presents the major concepts involved in
implementing an SNA network. Use this document in conjunction
with the z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC31-8778 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document in
conjunction with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC31-8836 This document contains sample definitions to help you implement
SNA functions in your networks, and includes sample major node
definitions.

z/OS Communications Server:
AnyNet SNA over TCP/IP

SC31-8832 This guide provides information to help you install, configure,
use, and diagnose SNA over TCP/IP.

z/OS Communications Server:
AnyNet Sockets over SNA

SC31-8831 This guide provides information to help you install, configure,
use, and diagnose sockets over SNA. It also provides information
to help you prepare application programs to use sockets over
SNA.

About this document xvii

Title Number Description

z/OS Communications Server:
IP Network Print Facility

SC31-8833 This document is for system programmers and network
administrators who need to prepare their network to route SNA,
JES2, or JES3 printer output to remote printers using TCP/IP
Services.

Operation:

Title Number Description

z/OS Communications Server:
IP User’s Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It
contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

z/OS Communications Server:
IP System Administrator’s
Commands

SC31-8781 This document describes the functions and commands helpful in
configuring or monitoring your system. It contains system
administrator’s commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP configuration
process.

z/OS Communications Server:
SNA Operation

SC31-8779 This document serves as a reference for programmers and
operators requiring detailed information about specific operator
commands.

z/OS Communications Server:
Quick Reference

SX75-0124 This document contains essential information about SNA and IP
commands.

Customization:

Title Number Description

z/OS Communications Server:
SNA Customization

LY43-0092 This document enables you to customize SNA, and includes the
following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs:

Title Number Description

z/OS Communications Server:
IP Application Programming
Interface Guide

SC31-8788 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own client
or server application. You can also use this document to adapt
your existing applications to communicate with each other using
sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the socket
interface for CICS® using z/OS TCP/IP.

xviii z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Title Number Description

z/OS Communications Server:
IP IMS Sockets Guide

SC31-8830 This document is for programmers who want application
programs that use the IMS™ TCP/IP application development
services provided by IBM’s TCP/IP Services.

z/OS Communications Server:
IP Programmer’s Reference

SC31-8787 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program your
own applications in a TCP/IP environment. These functions
provide support for application facilities, such as user
authentication, distributed databases, distributed processing,
network management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time Sharing
Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program in
either the same or a different domain.

z/OS Communications Server:
SNA Programmer’s LU 6.2
Guide

SC31-8811 This document describes how to use the SNA LU 6.2 application
programming interface for host application programs. This
document applies to programs that use only LU 6.2 sessions or
that use LU 6.2 sessions along with other session types. (Only
LU 6.2 sessions are covered in this document.)

z/OS Communications Server:
SNA Programmer’s LU 6.2
Reference

SC31-8810 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC31-8808 This document describes how applications use the
communications storage manager.

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC31-8828 This document describes the Common Management Information
Protocol (CMIP) programming interface for application
programmers to use in coding CMIP application programs. The
document provides guide and reference information about CMIP
services and the SNA topology agent.

Diagnosis:

Title Number Description

z/OS Communications Server:
IP Diagnosis

GC31-8782 This document explains how to diagnose TCP/IP problems and
how to determine whether a specific problem is in the TCP/IP
product code. It explains how to gather information for and
describe problems to the IBM Software Support Center.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

LY43-0088

LY43-0089

These documents help you identify an SNA problem, classify it,
and collect information about it before you call the IBM Support
Center. The information collected includes traces, dumps, and
other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

LY43-0090

LY43-0091

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes:

About this document xix

Title Number Description

z/OS Communications Server:
SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and
USS messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB)

SC31-8784 This volume contains TCP/IP messages beginning with EZB.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4
(EZZ-SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ and
SNM.

z/OS Communications Server:
IP and SNA Codes

SC31-8791 This document describes codes and other information that
appear in z/OS Communications Server messages.

APPC Application Suite:

Title Number Description

z/OS Communications Server:
APPC Application Suite User’s
Guide

SC31-8809 This documents the end-user interface (concepts, commands,
and messages) for the AFTP, ANAME, and APING facilities of the
APPC application suite. Although its primary audience is the end
user, administrators and application programmers may also find it
useful.

z/OS Communications Server:
APPC Application Suite
Administration

SC31-8835 This document contains the information that administrators need
to configure the APPC application suite and to manage the
APING, ANAME, AFTP, and A3270 servers.

z/OS Communications Server:
APPC Application Suite
Programming

SC31-8834 This document provides the information application programmers
need to add the functions of the AFTP and ANAME APIs to their
application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communications Server for OS/390 V2R7 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

xx z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Title Number

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Migrating Subarea Networks to an IP Infrastructure SG24–5957

IBM Communication Controller Migration Guide SG24–6298

Related information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA documents.

The table below lists documents that may be helpful to readers.

Title Number

z/OS Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS Security Server LDAP Client Programming SC24-5924

z/OS Security Server LDAP Server Administration and Use SC24-5923

Understanding LDAP SG24-4986

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services User’s Guide SA22-7801

z/OS UNIX System Services Planning GA22-7800

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS C/C++ Run-Time Library Reference SA22-7821

z/OS Program Directory GI10-0670

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995) ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 1997 ISBN 156592–222–0

TCP/IP Tutorial and Technical Overview GG24-3376

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995 ISBN 0-201-63495-3

z/OS System Secure Sockets Layer Programming SC24-5901

About this document xxi

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:

v At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

xxii z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Part 1. IPv6 Overview

This section contains the following chapters:

Chapter 1, “Introduction” on page 3 provides an introduction to IPv6 for z/OS CS
Version 1 Release 4.

Chapter 2, “IPv6 addressing” on page 9 contains a discussion on the IPv6
addressing model and the different IPv6 address types.

Chapter 3, “IPv6 protocol” on page 21 provides a descripton of the z/OS CS Version
1 Release 4 implementation of the IPv6 protocol.

© Copyright IBM Corp. 2002 1

2 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 1. Introduction

Internet Protocol Version 6 (IPv6) is the next generation of the Internet protocol
designed to replace the current version, Internet Protocol Version 4 (IPv4). Most of
today’s internets use IPv4, which is approximately 20 years old and is approaching
the end of its physical limits. The most significant issue surrounding IPv4 is the
growing shortage of IPv4 addresses. In theory, 32 bits allow over 4 billion nodes,
each with a globally unique address. In practice, the interaction between routing
and addressing makes it impossible to exploit more than a small fraction of that
number of nodes. Consequently, there is a growing concern that the continued
growth of the Internet will lead to the exhaustion of IPv4 addresses early in the 21st
century.

IPv6 fixes a number of problems in IPv4, such as the limited number of available
IPv4 addresses. IPv6 uses 128-bit addresses, an address space large enough to
last for the foreseeable future. It also adds many improvements to IPv4 in areas
such as routing and network autoconfiguration. IPv6 is expected to gradually
replace IPv4, with the two coexisting for a number of years during a transition
period.

IPv6 is an evolutionary step from IPv4. Functions that work well in IPv4 have been
kept in IPv6, and functions that did not work well in IPv4 have been removed.

z/OS Communications Server Version 1 Release 4 is the first release to incorporate
IPv6 features. Not all IPv6 features are supported in this release. This release
enables you to do the following:

v Build an IPv6 network

v Start using IPv6-enabled applications

v Enable existing IPv4 applications to be IPv6 applications

This document describes the support available and how to implement it. This
chapter discusses some of the major differences between IPv4 and IPv6.

For more information on some of the features that are not yet supported, refer to
Part 4, “Advanced topics” on page 105.

Expanded routing and addressing
IPv6 uses a 128-bit address space, which has no practical limit on global
addressibility and provides 340 billion billion billion billion unique addresses. This is
enough addresses so that every person can have a single IPv6 network with as
many as 18 000 000 000 000 000 000 nodes on it, and still the address space
would be almost completely unused.

The greater availability of IPv6 addresses eliminates the need for private address
spaces, which in turn eliminates one of the needs for network address translators
(NATs) to be used between the private Intranet and the public Internet.

© Copyright IBM Corp. 2002 3

Hierarchical addressing and routing infrastructure
As important as the expanded address space is the use of hierarchical address
formats. The IPv4 addressing hierarchy includes network, subnet, and host
components in an IPv4 address. IPv6, with its 128-bit addresses, provides globally
unique and hierarchical addressing based on prefixes rather than address classes,
which keeps routing tables small and backbone routing efficient.

The general format is as follows:

n bits m bits 128-(n+m)bits

interface IDglobal routing prefix subnet ID

The global routing prefix is a value (typically hierarchically structured) assigned to a
site; the subnet ID is an identifier of a link within the site; and the interface ID is a
unique identifier for a network device on a given link (usually automatically
assigned).

Simplified IP header format
The IPv6 header has a fixed size and its format is more simplified than the IPv4
header. Some fields in the IPv4 header were dropped in IPv6 or moved to optional
IPv6 extension headers to reduce the common-case processing cost of packet
handling, as well as keep the bandwidth cost of the IPv6 header as low as possible
despite increasing the size of addresses. While the IPv6 address is four times the
size of the IPv4 address, the total IPv6 header size is only twice as large as the
IPv4 header size.

Improved support for options
Changes in the way IP header options are encoded allows for more efficient
forwarding, less stringent limits on the length of options, and greater flexibility for
introducing new options in the future. Optional IPv6 header information is conveyed
in independent extension headers located after the IPv6 header and before the
transport-layer header in each packet. Most IPv6 extension headers are not
examined or processed by intermediate nodes, in contrast to IPv4.

Address autoconfiguration
IPv6 provides for both stateless and stateful autoconfiguration. Stateless
autoconfiguration allows a node to be configured in the absence of any
configuration server. Stateless autoconfiguration further makes it possible for a node
to configure its own globally routable addresses in cooperation with a local IPv6
router, by combining the 48- or 64-bit MAC address of the adapter with network
prefixes that are learned from the neighboring router.

Figure 1. IPv6 address space

4 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

IPv6 allows the use of DHCPv6 for stateful autoconfiguration. DHCPv6 relies on a
configuration server that maintains static tables to determine the addresses that are
assigned to newly connected nodes. z/OS CS does not support DHCPv6.

Manual configuration of addresses may be used in environments where complete
local control is required (as with VIPA or additional LOOPBACK addresses).

New protocol for neighbor node interaction
Neighbor Discovery (NeD) corresponds to a combination of the IPv4 protocols ARP,
ICMP Router Discovery, and ICMP Redirect. Nodes (hosts and routers) use
Neighbor Discovery to determine the link-layer addresses for neighbors known to
reside on attached links and to quickly purge cached values that become invalid.
Hosts also use Neighbor Discovery to find neighboring routers that are willing to
forward packets on their behalf. Neighbor Discovery also defines a Neighbor
Unreachability Detection algorithm. IPv4 does not contain a generally agreed upon
protocol for performing Neighbor Unreachability Detection, although Dead Gateway
Detection does address a subset of the problems that Neighbor Unreachability
Detection solves.

Neighbor Discovery is used to do the following:

v Obtain configuration information which includes:

– Router Discovery, which defines how hosts can automatically locate routers
that reside on an attached link.

– Prefix Discovery, which specifies how hosts discover the set of prefixes that
are defined as being on-link (IPv6 address prefixes that reside on the shared
link, such as an ethernet link), as well as those which are to be used when
implementing Stateless Address Autoconfiguration.

– Parameter Discovery, which allows a host to learn link parameters, such as
the link MTU, and IP parameters, such as the hop limit to place in outgoing
packets.

v Perform address resolution. Address resolution allows a node to determine the
link-layer address of an on-link destination given the destination’s IP address.

v Dynamically learn routes which can be used in next-hop determination. This
specifies the algorithm for mapping the IP destination address into the IP address
of the neighbor to which traffic should be sent. The next-hop can be either a
router or the destination itself. Next-hop determination uses the on-link prefixes
learned as part of Prefix Discovery to determine when the next hop is the
destination itself.

v Determine when a neighbor is no longer reachable using Neighbor Unreachability
Detection.

v Process Redirect messages. Routers use Redirect messages to notify a node
that a better next-hop node should be used when forwarding packets to a
particular destination. The new next-hop could be the actual destination, if the
destination is on-link, or a different router, if the destination is off-link.

Chapter 1. Introduction 5

Comparison of IPv6 and IPv4 characteristics
There are major differences between IPv4 and IPv6. The following chart provides a
quick reference of these differences:

Table 1. IPv4/IPv6 comparison

IPv4 IPv6

Source and destination addresses are 32
bits (4 bytes) in length.

Source and destination addresses are 128
bits (16 bytes) in length. For more
information, refer to Chapter 2, “IPv6
addressing” on page 9.

Uses broadcast addresses to send traffic to
all nodes on a subnet.

There are no IPv6 broadcast addresses.
Instead, multicast scoped addresses are
used. For more information refer to “Multicast
scope” on page 17.

Fragmentation is supported at originating
hosts and intermediate routers.

Fragmentation is not supported at routers. It
is only supported at the originating host. For
more information refer to “Fragmentation in
an IPv6 network” on page 21.

IP header includes a checksum. IP header does not include a checksum.

IP header includes options. All optional data is moved to IPv6 extension
headers. For more information refer to
“Extension headers” on page 21.

IPSec support is optional. IPSec support is required in a full IPv6
implementation.

No identification of payload for QoS handling
by routers is present within the IPv4 header.

Payload identification for QoS handling by
routers is included in the IPv6 header using
the Flow Label field. For more information
refer to “Option to provide QoS classification
data” on page 98.

ICMP Router Discovery is used to determine
the IPv4 address of the best default gateway
and is optional.

Uses ICMPv6 Router Solicitation and Router
Advertisement to determine the IPv6 address
of the best default gateway and is a required
function. For more information, refer to
“Router advertisements” on page 25. z/OS
sends Router Solicitations and processes
Router Advertisements but does not send
Router Advertisements.

Address Resolution Protocol (ARP) uses
broadcast ARP Request frames to resolve an
IPv4 address to a link layer address.

Uses multicast Neighbor Solicitation
messages for address resolution. For more
information refer to “Address resolution” on
page 28.

Internet Group Management Protocol (IGMP)
is used to manage local subnet group
membership.

Uses Multicast Listener Discovery (MLD)
messages to manage local subnet group
membership. For more information refer to
“Multicast Listener Discovery (MLD)” on
page 24.

Addresses must be configured either
manually or through DHCP.

Addresses may be automatically assigned
using stateless address autoconfiguration,
assigned using DHCPv6, or manually
configured. DHCPv6 is not supported in
z/OS CS V1R4.

6 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Table 1. IPv4/IPv6 comparison (continued)

IPv4 IPv6

Uses host address (A) resource records in
the Domain Name System (DNS) to map
host names to IPv4 addresses.

Uses host address (AAAA) resource records
in the Domain Name System (DNS) to map
host names to IPv6 addresses. For more
information refer to “DNS” on page 54.

Uses pointer (PTR) resource records in the
IN-ADDR.ARPA DNS domain to map IPv4
addresses to host names.

Uses pointer (PTR) resource records in the
IP6.ARPA or IP6.INT DNS domain to map
IPv6 addresses to host names. For more
information refer to “Resolving names into
IPv6 addresses” on page 55.

For QoS, IPv4 supports both differentiated
and integrated services.

Differentiated and integrated services are
both supported. In addition, IPv6 provides
flow label that can be used for more granular
treatment of packets. QoS is not supported
in z/OS CS V1R4.

Dual-mode stack support
z/OS Communications Server can be an IPv4-only stack or a dual-mode stack.
Dual-mode stack refers to a single TCP/IP stack supporting both IPv4 and IPv6
protocols at the same time. There is no support for an IPv6-only stack. There are
several advantages of running in a dual-mode stack configuration:

v IPv4 and IPv6 applications can coexist on a single dual-mode stack.

v Unmodified applications can continue to send data over an IPv4 network.

v A single IPv6-enabled application can communicate using IPv4 and IPv6.

v IPv4 and IPv6 can coexist in the same devices and networks.

For more detailed information on dual-mode stack support, refer to “Dual-mode
stack” on page 36.

Chapter 1. Introduction 7

8 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 2. IPv6 addressing

Textual representation of IPv6 addresses
IPv4 addresses are represented in dotted-decimal format. The 32-bit address is
divided along 8-bit boundaries. Each set of 8 bits is converted to its decimal
equivalent and separated by periods. In contrast, IPv6 addresses are 128 bits
divided along 16-bit boundaries. Each 16-bit block is converted to a 4-digit
hexadecimal number and separated by colons. The resulting representation is
called colon-hexadecimal.

There are three conventional forms for representing IPv6 addresses as text strings:

v The preferred form is x:x:x:x:x:x:x:x, where the x’s are the hexadecimal values of
the eight 16-bit pieces of the address. For example:
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

1080:0:0:0:8:800:200C:417A

Note that it is not necessary to write the leading zeros in an individual field, but
there must be at least one numeral in every field (except for the case described
in the following bullet).

v Due to some methods of allocating certain styles of IPv6 addresses, it will be
common for addresses to contain long strings of zero bits. In order to make
writing addresses containing zero bits easier, a special syntax is available to
compress the zeros. The use of :: indicates multiple groups of 16 bits of zeros.
The :: can only appear once in an address. The :: can also be used to compress
both leading and trailing zeros in an address.

For example the following addresses:
1080:0:0:0:8:800:200C:417A a unicast address
FF01:0:0:0:0:0:0:101 a multicast address
0:0:0:0:0:0:0:1 the loopback address
0:0:0:0:0:0:0:0 the unspecified addresses

may be represented as:
1080::8:800:200C:417A a unicast address
FF01::101 a multicast address
::1 the loopback address
:: the unspecified addresses

v An alternative form that is sometimes more convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the x’s
are the hexadecimal values of the 6 high-order 16-bit pieces of the address, and
the d’s are the decimal values of the 4 low-order 8-bit pieces of the address
(standard IPv4 representation). This is used for IPv4-compatible IPv6 addresses
and IPv4-mapped IPv6 addresses. These types of addresses are used to hold
embedded IPv4 addresses in order to carry IPv6 packets over IPv4 routing
infrastructure. The address can be expressed in the following manner:
0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:
::13.1.68.3
::FFFF:129.144.52.38

© Copyright IBM Corp. 2002 9

Textual representation of IPv6 prefixes
The text representation of IPv6 address prefixes is similar to the way IPv4 address
prefixes are written in Classless Inter-Domain Routing (CIDR) notation. An IPv6
address prefix is represented by the notation:
ipv6-address/prefix-length

where

ipv6-address
is an IPv6 address in any of the notations listed above.

prefix-length
is a decimal value specifying how many of the leftmost contiguous bits of
the address comprise the prefix.

For example, the following are legal representations of the 60-bit prefix
12AB00000000CD3 (hexadecimal):
12AB:0000:0000:CD30:0000:0000:0000:0000/60
12AB::CD30:0:0:0:0/60
12AB:0:0:CD30::/60

The following are not legal representations of the preceding prefix:
12AB:0:0:CD3/60 - may drop leading zeros, but not
trailing zeros, within any 16-bit chunk of the address.

12AB::CD30/60 - address to left of "/" expands to

12AB:0000:0000:0000:0000:0000:0000:CD30

12AB::CD3/60 - address to left of "/" expands to

12AB:0000:0000:0000:0000:0000:0000:0CD3

When writing both a node address and a prefix of that node address (for example,
the node’s subnet prefix), the two can be combined as follows:
the node address 12AB:0:0:CD30:123:4567:89AB:CDEF

and its subnet number 12AB:0:0:CD30::/60

can be abbreviated as 12AB:0:0:CD30:123:4567:89AB:CDEF/60

IPv6 address space
The type of a IPv6 address is identified by the high-order bits of the address, as
follows:

Table 2. Address type representation

Address type Binary prefix IPv6 notation

Unspecified 00...0 (128 bits) ::/128

Loopback 00...1 (128 bits) ::1/128

Multicast 11111111 FF00::/8

Link-local unicast 1111111010 FE80::/10

Site-local unicast 1111111011 FEC0::/10

Global unicast aggregatable (everything else)

Anycast addresses are taken from the unicast address spaces (of any scope) and
are not syntactically distinguishable from unicast addresses. Anycast is described
as a cross between unicast and multicast. Like multicast, multiple nodes may be

10 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

listening on an Anycast address. Like unicast, a packet sent to an Anycast address
will be delivered to one (and only one) of those nodes. The exact node to which it is
delivered is based on the IP routing tables in the network.

For more information on different IPv6 addresses, refer to “Categories of IPv6
addresses” on page 12.

IPv6 addressing model
IPv6 unicast addresses of all types (excluding loopback and unspecified) may be
assigned to a node’s interfaces.

All physical interfaces (excluding VIPA and loopback) are required to have at least
one link-local unicast address. z/OS CS only allows a single link-local address per
interface. Other platforms may have more than one. A single interface may be
assigned multiple unicast or anycast IPv6 addresses. Multiple IPv6 multicast groups
of any scope may be joined on a single interface. A unicast address or a set of
unicast addresses may be assigned to multiple physical interfaces if the
implementation treats the multiple physical interfaces as one interface when
presenting it to the Internet layer.

Currently IPv6 continues the IPv4 model that a subnet prefix is associated with one
link. Multiple subnet prefixes may be assigned to the same link.

Scope zones
Each IPv6 address has a specific scope in which it is defined. A scope is a
topological area within which the IPv6 address may be used as a unique identifier
for an interface or a set of interfaces. The scope for an IPv6 address is encoded as
part of the address itself. A unicast address can have a link-local, site-local, or
global scope, while a multicast address supports interface-local, link-local,
subnet-local, admin-local, site-local, organization-local, and global scopes. See
“Unicast IPv6 addresses” on page 12 and “Multicast IPv6 Addresses” on page 17 for
more discussions on unicast and multicast scopes.

A scope zone is an instance of a given scope. For instance, a link and all directly
attached interfaces comprise a single link-local scope zone, while the set of links
within a site and all directly attached interfaces comprise an instance of a site-local
scope zone. A scope zone has the following properties:

v A scope zone is comprised of a contiguous set of interfaces and the links to
which the interfaces are attached.

v An interface can only belong to one scope zone of each possible scope.

v A node can be connected to more than one scope zone of a given scope. For
instance, a node can be connected to multiple link-local scope zones if it is
attached to more than one LAN, and can be connected to multiple site-local
scope zones if it is directly connected to more than one site.

v The scope zone for an IPv6 address is not encoded within the address itself, but
is instead determined by the interface over which the packet is sent or received.

v There is a single scope zone for IPv6 addresses of global scope which
comprises all interfaces and links in the Internet.

v Packets which contain a source or destination address of a given scope can only
be routed within the same scope zone, and cannot be routed between different
scope zone instances.

Chapter 2. IPv6 addressing 11

v Addresses of a given scope can be reused in different scope zones. For
instance, the same site-local address may be assigned to different interfaces,
whether owned by the same node or different nodes, as long as the interfaces
are not in the same site-local scope zone.

v Scope zones associated with the inbound and intended outbound interfaces are
compared to determine if packets containing a limited scope address (for
example, an address of scope other than global) can be successfully routed.

v Scope zone representations (zone indices) are only valid on the node where they
are defined. The same zone can have separate representations in each node
that belongs to that zone.

To identify a specific instance of a scope zone, a node assigns a unique scope
zone index to each scope zone of the same scope to which it is attached.

Categories of IPv6 addresses
An IPv6 address is identified by the high-order bits of the address. Three categories
of IP addresses are supported in IPv6:

Unicast
An identifier for a single interface. A packet sent to a unicast address is
delivered to the interface identified by that address. It can be link-local
scope, site-local scope, or global scope.

Multicast
An identifier for a group of interfaces (typically belonging to different nodes).
A packet sent to a multicast address is delivered to all interfaces identified
by that address.

Anycast
An identifier for a group of interfaces (typically belonging to different nodes).
A packet sent to an anycast address is delivered to the closest member of
a group, according to the routing protocols’ measure of distance. Anycast
addresses are not supported in z/OS CS V1R4.

There are no broadcast addresses in IPv6. Multicast addresses have superseded
this function.

Unicast IPv6 addresses
IPv6 unicast addresses are aggregatable with prefixes of arbitrary bit-length similar
to IPv4 addresses under Classless Interdomain Routing (CIDR).

There are several types of unicast addresses in IPv6, in particular global unicast,
site-local unicast, and link-local unicast. There are also some special-purpose
subtypes of global unicast, such as IPv6 addresses with embedded IPv4 addresses.
Additional address types or subtypes can be defined in the future.

A unicast address has the following format:

n bits 128-n bits

interface IDnetwork prefix

12 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Aggregatable global addresses
Aggregatable global unicast addresses are equivalent to public IPv4 addresses.
They are globally routable and reachable on the IPv6 portion of the Internet.

A global unicast address has the following format:

Network Prefix
The network prefix is used to identify a specific customer site. The size of
the field is 48 bits and allows an ISP to create multiple levels of addressing
hierarchy within the network to both organize addressing and routing for
downstream ISPs and identify sites.

Subnet ID
The subnet ID is used by an individual organization to identify subnets
within its site. The organization can use these 16 bits to create 65 536
subnets or multiple levels of addressing hierarchy.

Interface ID
Indicates the interface on a specific subnet. The size of this field is 64 bits.

64 bits3 bits 45 bits 16 bits

interface ID001 network prefix subnet ID

Local use address
There are two types of local-use unicast addresses defined, link-local and site-local.
The link-local address is for use on a single link and the site-local address is for
use in a single site.

Link-local addresses: Link-local addresses have the following format:

10 bits 54 bits 64 bits

interface ID1111111010 0

A link-local address is required on each physical interface. Link-local addresses are
designed to be used for addressing on a single link for purposes such as automatic

Figure 2. Unicast address format

Figure 3. Global unicast address format

Figure 4. Link-local address format

Chapter 2. IPv6 addressing 13

address configuration, neighbor discovery, or in the absence of routers. It also may
be used to communicate with other nodes on the same link. A link-local address is
automatically assigned.

Routers will not forward any packets with link-local source or destination addresses
to other links.

1

Link scope
zone

1

2

31

1 2 3

Link scope
zone

Figure 5 depicts two separate link-local scope zones. More than one interface may
be connected to the same link for fault tolerance or extra bandwidth. Some nodes
may allow the same link-local zone index to be assigned to each interface
connected to the same physical link, while others may assign a unique link-local
zone index to each interface even when more than one interface is connected to
the same physical link. z/OS CS V1R4 takes the latter approach, assigning a
unique link-local zone index to each physical interface.

Site-local addresses: Site-local addresses have the following format:

10 bits 16 bits 64 bits

interface IDsubnet ID1111111011

38 bits

0

Site-local addresses are designed to be used for addressing inside of a site without
the need for a global prefix. A site-local address cannot be reached from another
site. A site-local address is not automatically assigned to a node. It must be
assigned using automatic or manual configuration.

Figure 5. Link-local scope zones

Figure 6. Site-local address format

14 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Routers will not forward any packets with site-local source or destination addresses
outside of the site.

FEC0::1:2:3:4

9

1

5 9 9 8

FEC0::1:2:3:4

Site local zone

1

3

31

A B

C

D

E

Site local zone

F

Nodes connected to the same site-local scope zone may communicate with each
other using site-local addresses. However, nodes which are not connected to the
same site-local scope zone may not communicate using site-local addresses but
must instead use global addresses.

Figure 7 depicts two site-local scope zones. In this configuration, node A can
communicate with node D using site-local addresses since they are both within the
same site-local scope zone. However, node A cannot communicate with node F
using site-local addresses because the two nodes are not connected to the same
site-local scope zone. Instead, node A must use global addresses when
communicating with node F. Since node C is connected to both site-local scope
zones, it may use the appropriate site-local address when communicating with both
node A and node F.

z/OS CS V1R4 supports connecting to a single site-local scope zone and cannot be
connected to two or more site-local scope zones at the same time. For example,
z/OS CS V1R4 could be either node A or node F in Figure 7, as both are connected
to only a single site-local scope zone, but could not be node C, as node C is
connected to two site-local scope zones.

Loopback address
The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It cannot be
assigned to any physical interface. It may be thought of as a link-local unicast
address assigned to a virtual interface (typically called the loopback interface) that
allows local applications to send messages to each other.

The loopback address cannot be used as the source address in IPv6 packets that
are sent outside of a node. An IPv6 packet with a destination address of loopback
cannot be sent outside of a node and be forwarded by an IPv6 router. A packet
received on an interface with destination address of loopback will be dropped.

Figure 7. Site-local scope zones

Chapter 2. IPv6 addressing 15

Unspecified address
The address 0:0:0:0:0:0:0:0 is called the unspecified address. It will not be assigned
to any node. It indicates the absence of an address. One example of its use is in
the Source Address field of any IPv6 packets sent by an initializing host before it
has learned its own address.

The unspecified address cannot be used as the destination address of IPv6 packets
or in IPv6 routing headers. An IPv6 packet with a source address of unspecified
cannot be forwarded by an IPv6 router.

IPv4-mapped IPv6 addresses
These addresses hold an embedded global IPv4 address. They are used to
represent the addresses of IPv4 nodes as IPv6 addresses to applications that are
enabled for IPv6 and are using AF_INET6 sockets. This allows IPv6 enabled
applications to always deal with IP addresses in IPv6 format regardless of whether
the TCP/IP communications are occuring over IPv4 or IPv6 networks. The
dual-mode TCP/IP stack performs the transformation of the IPv4-mapped addresses
to and from native IPv4 format. IPv4-mapped addresses have the following format:

80 bits 16 32 bits

IPv4 address0000 0000 FFFF

For example:
::FFFF:129.144.52.38

IPv6 interface identifiers
Interface identifiers in IPv6 unicast addresses are used to identify interfaces on a
link. They are required to be unique on that link. In some cases an interface’s
identifier will be derived directly from that interface’s link-layer address. z/OS CS will
not allow two links to have the same local address. Some implementations may
allow the same interface identifier to be used on multiple interfaces on a single
node, as long as they are attached to different links.

z/OS CS builds the interface identifier when the interface becomes active, in the
following way:

1. OSA-Express returns the MAC address and a unique instance value during the
start of an interface.

2. z/OS builds the interface identifier by inserting the unique instance value into
the middle of the MAC address. This ensures that when multiple stacks share
an OSA, each stack gets a unique interface ID.

24bits 16bits 24bits

MAC addr (bytes 1-3) instance value MAC addr (bytes 4-6)

Figure 8. IPv4-mapped IPv6 address

Figure 9. Interface ID format

16 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

A node can choose to use a different algorithm available for generation of interface
identifiers for IPv6 addresses on a different platform.

Multicast IPv6 Addresses
An IPv6 multicast address is an identifier for a group of interfaces (typically on
different nodes). It is identified with a prefix of 11111111 or FF in hexadecimal
notation. It provides a way of sending packets to multiple destinations. An interface
may belong to any number of multicast groups.

Multicast address format
Binary 11111111 at the start of the address identifies the address as being a
multicast address. Multicast addresses have the following format:

112 bits8 4 4

group ID11111111 flgs scope

flgs is a set of 4 flags:

0 0 0 T

v The 3 high-order flags are reserved, and must be initialized to 0.

v T = 0 indicates a permanently-assigned (well-known) multicast address, assigned
by the Internet Assigned Number Authority (IANA).

v T = 1 indicates a non-permanently assigned (transient) multicast address.

Scope is a 4-bit multicast scope value used to limit the scope of the multicast
group. Group ID identifies the multicast group, either permanent or transient, within
the given scope.

Multicast scope
The scope field indicates the scope of the IPv6 internetwork for which the multicast
traffic is intended. The size of this field is 4 bits. In addition to information provided
by multicast routing protocols, routers use multicast scope to determine whether
multicast traffic can be forwarded. For multicast addresses there are 14 possible
scopes (some are still unassigned), ranging from interface-local to global (including
both link-local and site-local).

Figure 10. Multicast address format

Figure 11. Flags in multicast address

Chapter 2. IPv6 addressing 17

The following table lists the defined values for the scope field:

Table 3. Multicast scope field values

Value Scope

0 Reserved

1 Interface-local scope (same node)

2 Link-local scope (same link)

3 Subnet-local scope

4 Admin-local scope

5 Site-local scope (same site)

8 Organization-local scope

E Global scope

F Reserved

All other scope field values are currently undefined.

For example, traffic with the multicast address of FF02::2 has a link-local scope. An
IPv6 router never forwards this type of traffic beyond the local link.

Interface-local
The interface-local scope spans a single interface only. A multicast address
of interface-local scope is useful only for loopback delivery of multicasts
within a node, for example, as a form of interprocess communication within
a computer. Unlike the unicast loopback address, interface-local multicast
addresses may be joined on any interface.

Link-local
Link-local addresses are used by nodes when communicating with
neighboring nodes on the same link. The scope of the link-local address is
the local link.

Subnet-local
Subnet-local scope is given a different and larger value than link-local to
enable possible support for subnets that span multiple links.

Admin-local
Admin-local scope is the smallest scope that must be administratively
configured, that is, not automatically derived from physical connectivity or
other, non-multicast-related configuration.

Site-local
The scope of a site-local address is the site or organization internetwork.
Addresses must remain within their scope. A router must not forward
packets outside of its scope.

Organization-local
This scope is intended to span multiple sites belonging to a single
organization.

Global
Global scope is used for uniquely identifying interfaces anywhere in the
Internet.

Multicast groups
Group ID identifies the multicast group, either permanent or transient, within the
given scope. The size of this field is 112 bits. Permanently assigned groups can use
the group ID with any scope value and still refer to the same group. Transient
assigned groups can use the group ID in different scopes to refer to different

18 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

groups. Multicast addresses from FF01:: through FF0F:: are reserved, well-known
addresses. Use of these group IDs for any other scope values, with the T flag equal
to 0, is not allowed.

All-nodes multicast groups: These groups identify all IPv6 nodes within a given
scope. Defined groups include:

v Interface-local all-nodes group (FF01::1)

v Link-local all-nodes group (FF02::1)

All-routers multicast groups: These groups identify all IPv6 routers within a
given scope. Defined groups include:

v Interface-local all-routers group (FF01::2)

v Link-local all-routers group (FF02::2)

v Site-local all-routers group (FF05::2)

Solicited-node multicast group: For each unicast address which is assigned to
an interface, the associated solicited-node multicast group is joined on that
interface. The solicited-node multicast address facilitates the efficient querying of
network nodes during address resolution.

Anycast IPv6 Addresses
An IPv6 anycast address is an identifier for a set of interfaces (typically belonging to
different nodes). A packet sent to an anycast address is delivered to one of the
interfaces identified by that address (the nearest interface), according to the routing
protocols’ measure of distance. It uses the same formats as a unicast address, so
one cannot differentiate between a unicast and an anycast address simply by
examining the address. Instead, anycast addresses are defined administratively.

Typical IPv6 addresses assigned to a node
An IPv6 host is required to recognize the following addresses as identifying itself:

v Link-local address for each active IPv6 physical interface (cannot be manually
defined)

v Assigned unicast addresses (autoconfigured or manually defined)

v IPv6 loopback address (::1)

v All-nodes multicast address (interface-local and link-local)

v Solicited node multicast addresses for each of its assigned unicast and anycast
addresses

v Multicast addresses of all other groups to which the host belongs

IPv6 address states
An address state defines and controls how other algorithms will work with a
particular address.

Tentative
An address whose uniqueness on a link is being verified, prior to its assignment to
an interface. A tentative address is not considered assigned to an interface in the
usual sense. An interface discards received packets addressed to a tentative
address, unless those packets are related to Duplicate Address Detection (DAD).
For more information on DAD, refer to “Duplicate Address Detection (DAD)” on
page 28.

Chapter 2. IPv6 addressing 19

Deprecated
An address assigned to an interface whose use is discouraged, but not forbidden.
Packets sent from or to deprecated addresses are delivered as expected. A
deprecated address will continue to be used as a source address in existing
communications where switching to a preferred address would be disruptive.

Preferred
An address assigned to an interface whose use is unrestricted. Preferred addresses
may be used as the source or destination address of packets sent from or to the
interface, respectively.

Unavailable
An unavailable address is one that is not yet assigned to the interface.

20 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 3. IPv6 protocol

This chapter describes the z/OS CS Version 1 Release 4 implementation of the
IPv6 protocol. It is assumed that the reader is familiar with the IPv6 protocol in
general.

Extension headers
In IPv6, IP-layer options within a packet are encapsulated in independent headers
called extension headers. This is in contrast to IPv4 options, which are contained in
the IP header itself. Not all IPv6 extension headers are supported in z/OS CS
V1R4. The V1R4 stack supports receipt of the following extension headers:

v Routing

v Fragmentation

v Hop-by-hop option

v Destination option

Authentication headers and Encapsulating Security Payload headers are
unsupported for IPv6 in z/OS CS V1R4. Received IPv6 packets containing these
headers will be silently discarded.

Fragmentation in an IPv6 network
Fragmentation is used by a source to send a packet larger than would fit in the path
MTU to its destination. In order to send packets larger than the link minimum of
1280 bytes, a node must support determination of the minimum supported MTU
along the path between the source and destination. This is accomplished by Path
MTU Discovery. For more detailed information refer to “Path MTU discovery” on
page 22.

The IPv6 IP header does not contain information about fragments. The
fragmentation extension header carries this information. z/OS CS allows for 2048
active IPv6 reassemblies in progress at any given time. z/OS CS reassembly
timeout for IPv6 reassemblies is 60 seconds. These two values are not
configurable.

Fragmentation and UDP/RAW
Intermediate routers cannot fragment packets and UDP/RAW transports do not
perform retransmission. In order to try to ensure a UDP/RAW packet will not be
dropped due to fragmentation, z/OS CS will always send it using the minimum MTU
(1280) unless the MTU for the destination is learned from an ICMPv6 Packet Too
Big message.

Consider a situation where the MTU was learned by way of Path MTU discovery.
Then, the network topology changes, reducing the MTU to this particular
destination. UDP/RAW will send with the original learned MTU, and will receive a
Packet Too Big Message. In this case, this packet will be dropped, but subsequent
sends will learn the changed MTU and will send with the appropriate size.

© Copyright IBM Corp. 2002 21

Path MTU discovery
When one IPv6 node has a large amount of data to send to another node, the data
is transmitted in a series of IPv6 packets. It is usually preferable that these packets
be of the largest size that can successfully traverse the path from the source node
to the destination node. This packet size is referred to as the Path MTU (PMTU),
and it is equal to the minimum link MTU of all the links in a path. IPv6 provides
PMTU discovery as a standard mechanism for a node to discover the PMTU of an
arbitrary path.

For IPv6, intermediate routers cannot fragment packets. An implementation must
either support Path MTU Discovery or send using IPv6 minimum link MTU. z/OS
CS supports path MTU discovery.

Path MTU Discovery supports multicast as well as unicast destinations. When
PMTU information is learned, it is cached for a period of time and then deleted in
order to learn of increases in the MTU value.

IPv6 routing
IPv6 static routes (both replaceable and non-replaceable) are supported for z/OS
CS V1R4 by using BEGINROUTES profile statements. The GATEWAY statement in
the TCP/IP profile does not support IPv6 static routes.

Hosts can learn the network prefixes for all directly attached links from their routers.
By checking to see if another host’s IPv6 address is constructed from a network
prefix of one of the directly attached links, it is possible to determine if that host is
on a directly attached link or on a remote link. If it is on a directly attached link, data
can be sent directly to that host without going through a router; otherwise, it must
be sent through some router.

There are some limitations to be aware of. First, if a host has multiple interfaces
attached to more than one link, it must decide which interface to send the packet
over. If there are multiple routers on the link attached to the interface, it must decide
which router should send the packet. To make these decisions, it needs a route in
its routing table. Normally, this is populated by a dynamic routing protocol. z/OS CS
V1R4 does not yet support dynamic routing protocols, and will use the default route
when selecting which router on which interface to send the packet. This behavior
may not produce the desired results, therefore, static routes may be defined to
direct the traffic over the best interface using the appropriate router.

Dynamic routes for IPv6 are learned by router advertisements or ICMPv6 redirects.
They are not a replacement for dynamic routing protocols such as RIP or OSPF.
Replaceable static routes can be replaced by dynamic routes. If the dynamic route
is deleted, the replaceable static route will be re-added. ICMPv6 redirects will
replace static routes regardless of whether or not they are replaceable. Use the
IGNOREREDIRECT keyword on the IPCONFIG6 statement in the TCP/IP profile to
prevent the stack from adding routes learned by ICMPv6 redirects.

Since z/OS CS V1R4 does not support dynamic routing protocols, routes to VIPAs
cannot be advertised. For this reason, using a network prefix defined as being
on-link for the interfaces which are associated with the VIPA is recommended. In
this way, routers and hosts will believe the VIPA is on a physical interface and will
send Neighbor Discovery messages (the IPv6 equivalent of an ARP request) to get
the MAC address of the interface. This is not typically the recommended way to set
up VIPAs. Normally, they can be associated with interfaces on different LANs. But

22 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

without a dynamic routing protocol, it is either take the recommended approach or
define static routes at all routers on the same links as the z/OS system.

Considerations for route selection
Route precedence is as follows:

v Host route to the destination.

v Route for a prefix of the destination. If there are routes to multiple prefixes of the
destination, then the route with the most specific prefix is chosen.

v Default route.

For IPv4, there is a concept of a special default multicast route with a destination of
224.0.0.0 and a netmask of 255.255.255.255. For IPv6, there is no special default
multicast route. Since all IPv6 multicast addresses start with FF, the following prefix
route serves the same function as the default multicast route:
destination = FF00::/8

Considerations for multipath routes
Multiple routes to the same destination are considered multipath routes. Multipath
routes can be used for load balancing. Multipath route support for IPv6 is identical
to multipath route support for IPv4. You can control whether multiple routes are
selected by defining the MULTIPATH keyword on the IPCONFIG6 statement.

If MULTIPATH is not enabled, the first active route added will be selected.

The MTU used when using a route that belongs to a multipath group is the
minimum MTU of all routes in the multipath group.

How does a vary obey command affect routes?
When a vary obey command is issued and the profile contains a BEGINROUTES
block, the following will occur:

v All replaceable static routes will be deleted and replaced by any replaceable
routes defined in the BEGINROUTES block.

v All static routes will be deleted and replaced by any static routes defined in the
BEGINROUTES block.

v All routes learned by way of ICMPv6 redirects will be deleted.

v Routes learned by way of router advertisements are not affected by the obey file
processing, with one exception:

– If the obeyfile profile contains a non-replaceable static route to the same
destination for which a route exists that was learned by way of router
advertisements, the router advertisement route will be deleted.

ICMPv6
The IP protocol concerns itself with moving data from one node to another.
However, in order for IP to perform this task successfully, there are many other
functions that need to be carried out: error reporting, route discovery, and
diagnostics, among others. In IPv6, all these tasks are carried out by the Internet
Control Message Protocol (ICMPv6).

In addition, ICMPv6 provides a framework for Multicast Listener Discovery (MLD)
and Neighbor Discovery (NeD), which carry out the tasks of conveying multicast

Chapter 3. IPv6 protocol 23

group membership information (the equivalent of the IGMP protocol in IPv4) and
address resolution (performed by ARP in IPv4).

There are two types of ICMPv6 messages. Error messages are used to report
errors in the forwarding or delivery of IPv6 packets. Informational messages provide
diagnostic functions and additional host functionality such as MLD and NeD. Not all
ICMPv4 messages have equivalents in ICMPv6. The following ICMPv6 messages
are supported:

v Destination unreachable

v Packet too big

v Time exceeded (hop limit exceeded)

v Echo request/reply

v Parameter problem

v Multicasting messages

– Group membership query

– Report

– Done

v Neighbor discovery

– Router solicitation and advertisement

– Neighbor solicitation and advertisement

– Redirect

Multicasting
In early IP networks, a packet could be sent to either a single device (unicast) or to
all devices (broadcast). A single transmission destined for a group of devices was
not possible.

IPv6 uses multicast for those purposes for which IPv4 used broadcast;
consequently, IPv6 does not support broadcast.

Applications can use multicast transmissions to enable efficient communication
between groups of devices. Data is transmitted to a single multicast IP address and
received by any device that needs to obtain the transmission.

Multicast Listener Discovery (MLD)
MLD is the protocol used by an IPv6 router to discover the presence of multicast
listeners (that is, nodes wishing to receive multicast packets) on its directly attached
links, and to discover specifically which multicast addresses are of interest to those
listeners. This information is then provided to whichever multicast routing protocol is
being used by the router, in order to ensure that multicast packets are delivered to
all links where there are interested receivers. MLD is derived from IGMPv2. One
important difference to note is that MLD uses ICMPv6 message types, rather than
IGMP message types.

MLD has a router function and a listener function. The router function discovers the
presence of multicast listeners and ensures delivery of multicast packets to
listeners. The listener function informs routers when it starts and stops listening for
a multicast address and responds to queries about multicast addresses. z/OS CS
V1R4 implements the listener function.

24 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

When a listener starts listening for a multicast address on an interface, it will send
an MLD report message for that address on that interface.

When a listener stops listening for a multicast address on an interface, it will send a
single MLD done message.

An MLD query message is sent by a router to query listeners about multicast
addresses. A specific query is sent to listeners for a specific multicast address on a
receiving interface. A general query is sent to listeners for all multicast addresses
on a receiving interface. These query messages contain a maximum response
delay (MRD) which causes listeners to delay report messages and not send them if
another listener reports first. If no reports for the address are received from the link
after the response delay of the last query has passed, the routers on the link
assume that the address no longer has any listeners there; the address is therefore
deleted from the list and its disappearance is made known to the multicast routing
component.

Neighbor discovery (NeD)
Neighbor discovery is an ICMPv6 function that enables a node to identify other
hosts and routers on its links. It corresponds to a combination of IPv4 protocols
(ARP, ICMP Router Discovery, and ICMP Redirect). It maintains routes, MTU,
retransmit times, reachability time, and prefix information based on information
received from the routers. NeD uses Duplicate Address Detection (DAD) to verify
the host’s home addresses are unique on the LAN.

NeD uses Address Resolution to determine the link-layer addresses for neighbors
on the LAN and Reachability Detection to determine neighbor reachability.

Router advertisements
Router advertisements are sent by routers to announce their availability. z/OS CS
V1R4 receives router advertisements but does not originate them.

If the router advertisement indicates that the sending router should be used as a
default router, a neighbor cache entry will be created/updated for the sending router
and the following information will be stored in the host’s routing table:

v IPv6 dynamic default route will be added (if not added by a previous
advertisement).

v Next hop of default route will be the advertisement’s source address.

v Interface of default route will be the interface on which the advertisement was
received.

v Length of time that route will remain valid is set or reset using the Lifetime value
from the advertisement.

If a non-replaceable static default route exists, then no dynamic default route will be
added due to the received router advertisement.

If a replaceable static default route exists, the dynamic default route will be added
due to the received router advertisement, replacing the replaceable route. The
replaceable static default route will be reinstated if the dynamic default route is later
removed.

If the router advertisement indicates that the sending router should not be used as
a default router, the following will occur:

Chapter 3. IPv6 protocol 25

v If an IPv6 dynamic default route exists with the advertisement’s source as its
next hop and the receiving interface as its interface, it will be deleted.

v Any IPv6 dynamic indirect routes with the advertisement’s source as its next hop
and the receiving interface as its interface will be deleted.

v A neighbor cache entry will be created/updated for the sending router. The
neighbor cache entry contains data from the router advertisement such as:
indication that neighbor is a router, indication that neighbor is not a default router,
and link-local and link-layer address of neighbor.

A router advertisement can contain Prefix Information Options. These options inform
nodes of additional specific routes that are available to them, and indicate prefixes
for autoconfiguring addresses. A Prefix Information Option contains the on-link and
autonomous flags. The on-link flag, when set, indicates that on-link processing
needs to be performed for the prefix on the shared link. When a prefix is on-link,
the addresses in that prefix can be reached on that link without going through a
router. The autonomous flag, when set, indicates that autoconfigure processing
needs to be performed for the prefix on the shared link. A Prefix Information Option
can have just the on-link flag set, just the autonomous flag set, or both flags set.

The sending router indicates that a prefix is on-link by setting the on-link flag and
specifying a nonzero Valid Lifetime value for the prefix. If the Prefix Information
Option indicates that the prefix is on-link, the following will occur:

v An IPv6 dynamic direct route will be added (if not added by a previous
advertisement).

v The destination of the route will be the prefix being processed.

v The interface of the route will be the interface on which the advertisement was
received.

v The length of time that route will remain valid is set or reset using the Valid
Lifetime value from the Prefix Information Option.

If a non-replaceable static direct route exists to this prefix via this interface, then the
dynamic direct route will not be added. If a replaceable static direct route exists to
this prefix via this interface, the dynamic direct route will be added, replacing the
replaceable route. The replaceable static direct route will be reinstated if the
dynamic direct route is later removed.

The sending router can indicate that a prefix is no longer on-link by setting the
on-link flag and specifying a zero Valid Lifetime value for the prefix. In this case, if
an IPv6 dynamic direct route exists with the prefix being processed as its
destination and the receiving interface as its interface, it will be deleted.

The sending router can indicate that a prefix is to be used for address
autoconfiguration by setting the autonomous flag and specifying a nonzero Valid
Lifetime value for the prefix. If the Prefix Information Option indicates that the prefix
should be used for address autoconfiguration, the following will occur:

v An IPv6 home address will be added to the receiving interface for the
autoconfigured address (if not added by a previous advertisement).

v An IPv6 implicit route will be added for the receiving interface and the
autoconfigured address (if not added by a previous advertisement).

v The length of time that home address and implicit route will remain valid is set or
reset using Valid Lifetime value from the Prefix Information Option.

26 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

v The length of time that home address will remain preferred (not deprecated) will
be set or reset using the Preferred Lifetime value from the Prefix Information
Option.

If addresses are manually configured for an IPv6 interface via the INTERFACE
statement, autoconfiguration of addresses for that interface is disabled. If a prefix is
not 64 bits in length, it will not be used for autoconfiguration of addresses. Unlike
the prefix route and default route, the implicit route and home address cannot be
immediately deleted. They must age out. If Valid Lifetime value is set to infinity, the
implicit route and home address will not time out. For more information on
autoconfiguration, refer to “Stateless address autoconfiguration” on page 29.

Route timeouts
The valid lifetime for each type of route will be updated (extending the life of the
route) by the periodic receipt of router adverisements as long as the sending router
is available and is not reconfigured relative to its defined prefixes or default router
status.

When a Prefix Information Option contains a Valid Lifetime value of infinity, the
associated implicit and/or prefix route is considered permanent and will not age
unless a future Prefix Information Option for the prefix contains a non-infinity Valid
Lifetime value.

Expiration of the valid lifetime for a default route is immediate if a future Router
Advertisement indicates that the sending router is no longer a default router.
Expiration of the valid lifetime for a prefix route is immediate if a future Prefix
Information Option for the prefix contains a zero Valid Lifetime value. Expiration of
the valid lifetime for an implicit route cannot be made immediate since the minimum
lifetime allowed is two hours. It must age out naturally.

Vary obey considerations
If a non-replaceable static route in the obey file has the same destination as an
existing route that was added due to a received Router Advertisement, the existing
route will be replaced by the non-replaceable static route.

If the obey file specifies a manually configured home address for an interface that
already has autconfigured addresses, the autoconfigured addresses will be deleted
along with their associated implicit routes.

With the exception of the two preceding rules, all autoconfigured home addresses
and routes added due to received Router Advertisements will be maintained through
obey file processing.

Redirect processing
A node may receive a Redirect message from an on-link router if the router
determines that the destination is on-link or if there is a better first-hop router for the
given destination. z/OS CS can be configured to ignore the IPv6 Redirects sent by
routers by defining the IGNOREREDIRECT keyword on the IPCONFIG6 statement.
If processing of Redirect messages is enabled, z/OS CS will begin using the new
destination which is identified in the Redirect message. A router must use its
link-local address as the source address in Redirects that it originates. A received
Redirect will only be processed if the current route to the destination in the IPv6
route table has the source address of the Redirect as its next hop. Therefore, if
Redirects are to be accepted, all static indirect routes must be configured using the

Chapter 3. IPv6 protocol 27

next-hop router’s link-local address. If the previous route to the destination was a
host route, it will be deleted from the route table to keep it from being used by
Multipath processing.

If Redirect processing is disabled, z/OS CS will silently discard the Redirect
message.

Duplicate Address Detection (DAD)
DAD is used to verify that an IPv6 home address is unique on the LAN before
assigning the address to a physical interface (for example, QDIO). z/OS CS
responds to other nodes doing DAD for IP addresses assigned to the interface.
DAD is not done for VIPAs or loopback addresses. DAD for local addresses is
performed for physical interfaces when one of the following occurs:

v The interface is started (the autoconfigured link-local address and manually
configured addresses/prefixes are checked).

v A vary obey is issued containing an INTERFACE ADDADDR for an already active
interface.

v A Router Advertisement containing new prefix information and the autonomous
bit set is received on an interface enabled for stateless autoconfiguration.

You can disable DAD checking by specifying DUPADDRDET 0 on the INTERFACE
statement.

Duplicate Address Detection processing involves the following steps:

1. The host joins a link-local all-nodes multicast group at interface start processing.

2. The host joins a solicited-node group for the local address.

3. A neighbor solicitation is sent to the solicited-node multicast address with the
tentative address for which DAD is being performed.

4. The host waits for a neighbor response (neighbor advertisement or neighbor
solicitation) on the interface.

5. If no neighbor response is received within the specified retransmit time, the
address is considered unique on the LAN.

6. If a neighbor response is received within the specified time, the address is not
unique. The host leaves the solicited-node multicast group, issues a Duplicated
Address Detected console message, and marks the address unavailable due to
a duplicate address.

Unless DAD is disabled, the address is not considered assigned to an interface until
DAD is successfully completed for the local address. Packets can be received for
the all-nodes or solicited-node multicast groups, but there is no response because
the address is not yet assigned to the interface. If the local address is a manually
configured address, the addresses will be displayed in a Netstat HOME/-h report as
Unavailable (if the interface has not been started or if DAD failed).

In situations where DAD is not done for the IPv6 home address (by specifying
DUPADDRDET 0 on the INTERFACE statement or if it is a VIPA), the z/OS CS host
will still respond if another node is doing DAD for an IPv6 address assigned to the
interface or for IPv6 VIPAs when the interface is assigned to handle VIPAs. Note
that responses are not sent for loopback addresses.

Address resolution
Address resolution in IPv6 is similar to ARP processing in IPv4, except ICMP
neighbor solicitations, neighbor advertisements, router redirects, and router

28 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

advertisements are used to obtain the link-layer (MAC) address. The host sends a
neighbor solicitation to a solicited-node multicast address. It waits for a response for
a period of time known as retransmit time. If one is received, then the link-layer
address contained in the neighbor advertisement is cached and any queued
packets are sent to the address. If there is no response, the host repeats this
process up to three times before it declares a neighbor unreachable.

A neighbor cache entry can also be built when a neighbor solicitation for a local
address is received and the solicitation contains the sender’s link-layer address
(and the source address is not the unspecified address, that is, the sender is not
performing DAD). The neighbor cache entry is built if it does not exist based on the
assumption that a packet will soon be sent to this neighbor. Building the cache
entry reduces the overhead of having to perfom the task of address resolution for
the neighbor at a later time.

The NETSTAT ND/-n command can be issued to display information for a specific
neighbor or all neighbor cache entries. It will display the neighbor link-layer address,
state, whether the neighbor is a router or host, and if a router is a default router.
The following are the possible neighbor states:

Incomplete
Address resolution is in progress.

Reachable
Positive confirmation of reachability was received.

Stale An unsolicited neighbor discovery message has updated the link-layer
address. Reachability is verified the next time the entry is used.

Delay More than reachable time has elapsed since last positive confirmation of
reachability. Default reachable time is 30 seconds. It can be overridden by
data provided by neighbor advertisements. A small delay is experienced
before starting a probe of neighbor (upper layers may provide confirmation).

Probe Neighbor solicitations are sent to verify neighbor reachability.

Neighbor unreachability detection
Neighbor unreachability detection is used to verify that two-way communication with
a neighbor node exists. The host sends a neighbor solicitation to a node and waits
for a solicited neighbor advertisement. If one is received, then the node is
considered reachable. If there is no response, the host can repeat this process
before it declares a neighbor unreachable. If a neighbor is found to be unreachable,
the neighbor cache entry is deleted.

Assigning IP addresses to interfaces
Stateless address autoconfiguration will always be used to generate and assign a
link-local address to a physical IPv6 interface. If it is unable to assign a link-local
address, then interface activation will fail. No other addresses will be assigned to
the interface (whether they are assigned using stateless address autoconfiguration
or manual configuration) until a link-local address has been successfully assigned.

Stateless address autoconfiguration
The larger address field of IPv6 solves a number of problems inherent in IPv4, but
the size of the address itself may be a potential problem for the TCP/IP
administrator. As a result, IPv6 has the capability to automatically assign an address
to an interface at initialization time. By doing this, a network can become

Chapter 3. IPv6 protocol 29

operational with minimal action on the part of the TCP/IP administrator. Stateless
autoconfiguration is supported for a physical interface (for example, QDIO) in z/OS
CS if no manually configured addresses are defined on the interface. Manual
configuration of the host’s local addresses is not required except for VIPA
interfaces. Stateless address autoconfiguration consists of the following steps:

1. During system startup, the host obtains an interface token from the interface
hardware to create an interface ID. It generates its own addresses using a
combination of router advertised prefixes and interface IDs.

2. Duplicate address detection is performed for the address. If a duplicate is not
detected or DAD is disabled for the interface (DUPADDRDET 0 specified on the
INTERFACE statement), the local address is added.

3. A stateless autoconfigured address is deleted when its valid lifetime expires or
when a manually defined address is added to the interface.

An IPv6 address generated using stateless address autoconfiguration has two
timers associated with it: a preferred lifetime and a valid lifetime. Router
Advertisements contain the valid lifetime and preferred lifetime for a prefix. An
IPv6 address goes through two phases to handle the expiration of an address
gracefully:

Preferred
Use is unrestricted.

Deprecated
In anticipation of the expiration of the leased period, use of the address
is discouraged.

When the preferred lifetime expires, the address created from the prefix is
deprecated. When the valid lifetime expires, the address created from the prefix
is deleted and an operator message is issued.

Autoconfiguration considerations
v A manually configured address/prefix on an interface disables stateless

autoconfiguration for the interface.

v INTERFACE name DELADDR addr/prefix and INTERFACE name DEPRADDR
addr/prefix issued via OBEYFILE are not valid for autoconfigured addresses.

v A VARY OBEYFILE profile that contains ADDADDR or DELADDR INTERFACE
statements can affect stateless autoconfiguration:

– INTERFACE name ADDADDR addr/prefix issued via OBEYFILE results in
stateless autoconfigured addresses on the interface to be deleted. Stateless
autoconfiguration capability will be disabled.

– If the DELADDR removes the last manually configured address/prefix,
stateless autoconfiguration is enabled and subsequent router advertisements
can generate autoconfigured addresses.

v Autoconfigured addressses are not automatically added to DNS. Consider using
VIPA addresses in conjunction with autoconfigured addresses.

IP address takeover following an interface failure
The TCP/IP stack in z/OS CS provides transparent fault-tolerance for failed (or
stopped) IPv6 interfaces, when the stack is configured with redundant connectivity
onto a LAN. This support is provided by the z/OS CS interface-takeover function,
and applies to the IPv6 IPAQENET6 interface type.

At device or interface startup time, TCP/IP dynamically learns of redundant
connectivity onto the LAN, and uses this information to select suitable backups in

30 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

the case of a future failure of the device/interface. This support makes use of
neighbor discovery flows for IPv6 interfaces, so upon failure (or stop) of an
interface, TCP/IP immediately notifies stations on the LAN that the original IPv6
address is now reachable via the backup’s link-layer (MAC) address. Users
targeting the original IP address will see no outage due to the failure, and will be
unaware that any failure occurred.

Since this support is built upon neighbor discovery flows, no dynamic routing
protocol in the IP layer is required to achieve this fault tolerance. To enable this
support, you must configure redundancy onto the LAN by defining and activating
multiple INTERFACEs onto the LAN. Note that an IPv4 device cannot back up an
IPv6 interface, or vice versa.

The interface-layer fault-tolerance can be used in conjunction with VIPA addresses,
where applications can target the VIPA address, and any failure of the real LAN
hardware will be handled by the interface-takeover function. This differs from
traditional VIPA usage, where dynamic routing protocols are required to route
around true hardware failures.

How to get addresses for VIPAs
All VIPAs must be manually configured. VIPA interfaces are always active. IPv6
VIPAs may be site-local or global. Link-local VIPAs are not allowed since link-local
addresses are for use only on the associated LAN and there is no VIPA LAN.

To globally enable SOURCEVIPA for IPv6, configure the SOURCEVIPA keyword on
the IPCONFIG6 statement. Then, to enable SOURCEVIPA for particular interfaces,
use the SOURCEVIPAINTERFACE parameter on the INTERFACE statement for
those interfaces. The SOURCEVIPAINTERFACE parameter allows for the
specification of the interface name of the VIRTUAL6 interface whose addresses
should be used as SOURCEVIPA addresses.

Unlike IPv4, where the source VIPA selected is based upon the ordering of the
HOME list, IPv6 SOURCEVIPA uses the addresses configured on the VIPA
INTERFACE statement referenced by the SOURCEVIPAINTERFACE keyword on
the INTERFACE statement for the outbound interface. When that VIPA interface has
multiple addresses configured, the default source address selection algorithm
selects among them. For detailed information on the algorithm, refer to “Default
source address selection” on page 34.

VIPA recommendations
v Use different prefixes for IPv6 static VIPAs and for the IPv6 addresses assigned

to real interfaces.

Having static VIPAs configured with different prefixes than real addresses will
reduce the likelihood of address collisions between the manually configured
VIPAs and the autoconfigured addresses of the real interfaces. This is also
necessary as Duplicate Address Detection (DAD) is not performed for VIPA
addresses.

v To allow other hosts that share a LAN with the z/OS TCP/IP stack to access the
IPv6 VIPAs without the need for manual route configuration, a router on each
LAN should include the VIPA prefix in its router advertisements. The router
advertisements should define the prefix as being on-link and should indicate that
the prefix not be used for autoconfiguration.

As a result of a router advertising the VIPA prefix as being on-link, each host will
add a direct route to its route table indicating that the VIPA prefix can be reached
on the link, without going through a router.

Chapter 3. IPv6 protocol 31

As a result of a router advertising that the VIPA prefix should not be used for
autoconfiguration, each host on the LAN will not autoconfigure addresses on its
real interfaces using the VIPA prefix.

Default address selection
The IPv6 addressing architecture allows multiple unicast addresses to be assigned
to interfaces. These addresses may have different reachability scopes (link-local,
site-local, or global). These addresses may also be preferred or deprecated. Privacy
considerations have introduced the concepts of public addresses and temporary
addresses. The mobility architecture introduces home addresses and care-of
addresses. In addition, multihoming situations will result in more addresses per
node. For example, a node may have multiple interfaces, some of them tunnels or
virtual interfaces, or a site may have multiple ISP attachments with a global prefix
per ISP.

The end result is that IPv6 implementations will often be faced with multiple
possible source and destination addresses when initiating communication. It is
desirable to have default algorithms, common across all implementations, for
selecting source and destination addresses so that developers and administrators
can reason about and predict the behavior of their systems.

Furthermore, dual-mode stack implementations, which support both IPv6 and IPv4,
will very often need to choose between IPv6 and IPv4 when initiating
communication. For example, DNS name resolution may yield both IPv6 and IPv4
addresses with the network protocol stack having both IPv6 and IPv4 source
addresses available. In such cases, a simple policy to always prefer IPv6 or always
prefer IPv4 can produce poor behavior. As one example, suppose a DNS name
resolves to a global IPv6 address and a global IPv4 address. If the node has
assigned a global IPv6 address and a 169.254/16 autoconfigured IPv4 address,
then IPv6 is the best choice for communication because the global address has a
similar scope, therefore, a better chance of success. But if the node has assigned
only a link-local IPv6 address and a global IPv4 address, then IPv4 is the best
choice for communication because the scope more closely matches the scope of
the destination to which you are communicating. The destination address selection
algorithm solves this with a unified procedure for choosing among both IPv6 and
IPv4 addresses.

Source address selection and destination address selection are discussed
separately, but using a common framework enables the two algorithms together to
yield useful results. The algorithms attempt to choose source and destination
addresses of appropriate scope and configuration status (preferred or deprecated).

Default destination address selection
Resolver APIs have the capability to return multiple IP addresses as a result of a
host name query. However, many applications only use the first address returned to
attempt a connection or to send a UDP datagram. Therefore, the sorting of these IP
addresses is performed by the default destination address selection algorithm.

Establishing connectivity may depend on whether an IPv6 address or an IPv4
address is selected, thus making this sorting function even more important.

Default destination address selection only occurs when the system is enabled for
IPv6 and the application is using the getaddrinfo() API to retrieve IPv6 and/or IPv4
addresses.

32 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

The default destination address selection algorithm takes a list of destination
addresses and sorts them to generate a new list. The algorithm sorts together both
IPv6 and IPv4 addresses by a set of rules. Rules are applied, in order, to the first
and second address, choosing a best address. Rules are then applied to this best
address and the third address. This continues until rules have been applied to all
addresses and the entire list of addresses has been sorted. If one of the rules is
able to select the best address between two addresses, remaining rules are
bypassed for those two addresses. Subsequent rules act as tie-breakers for earlier
rules. The destination address selection algorithm attempts to predict what source
address will be selected by TCP/IP when the application initiates an outbound
connection or sends a datagram using the destination address. This source address
is used for some of the destination address selection criteria rules. Source address
prediction processing assumes that the application itself does not explicitly specify a
source IP address (using bind or ipv6_pktinfo) when initiating a connection or
sending a datagram. If the application does explicitly specify a source address, then
the destination address selected by this algorithm may not be optimal. The decision
which the application makes may assume that a different source address will be
used.

Rule 1: Avoid unusable destinations.
If one address is reachable (the stack has a route to the particular address)
and the other is unreachable, then place the reachable destination address
prior to the unreachable address.

Rule 2: Prefer matching scope.
If the scope of one address matches the scope of its source address and
the other address does not meet this criteria, then the address with the
matching scope is placed before the other destination address.

The scopes of the destination addresses and their associated source
addresses are determined by interrogating the high order bits of the
address. The destination address can be a multicast or unicast address.
Unicast Link-Local is mapped to multicast Link-Local, unicast Site-Local to
multicast Site-Local, and unicast Global scope to multicast Global scope.

Rule 3: Avoid deprecated addresses.
If one address is deprecated and the other is non-deprecated, then the
non-deprecated address is placed prior to the other address.

Rule 4: Prefer matching address formats.
If one address format matches its associated source address format and
the other destination does not meet this criteria, then place the destination
with the matching format prior to the other address.

Rule 5: Prefer higher precedence.
If the precedence of one address is higher than the precedence of the other
address, then the address with the higher precedence is placed before the
other destination address.

Rule 6: Use longest matching prefix.
If one destination address has a longer CommonPrefixLength with its
associated source address than the other destination address has with its
source address, then the address with the longer CommonPrefixLength is
placed before the other address.

Rule 7: Leave the order unchanged.
No rule selected a better address of these two; they are equally good.
Choose the first address as the better address of these two and the order is
not changed.

Chapter 3. IPv6 protocol 33

Default source address selection
When the application or upper-layer protocol has not selected a source address for
an outbound IPv6 packet (using bind or ipv6_pktinfo), the default source address
selection algorithm will select one.

The goal of default source address selection is to select the address that is most
likely to allow the packet to reach its destination and to support site renumbering.
The group of candidate addresses consists of the addresses assigned to the
outbound interface (both configured and/or dynamically generated) or the addresses
configured for the outbound interface’s SOURCEVIPA interface. Any address which
is not preferred or deprecated is excluded from the candidate list. The algorithm is
applied to the candidate address list to select the best source address for the
packet. If there is only one address in the list of candidate source addresses, then
that address is used. If there is more than one address in the candidate list, one is
selected by applying the algorithm’s rules to the addresses. Rules are applied, in
order, to the first and second address, choosing a best address. Rules are then
applied to this best address and the third address. This continues until rules have
been applied to all addresses. If one of the rules is able to select the best address
between two addresses, remaining rules are bypassed for those two addresses.
Subsequent rules act as tie-breakers for earlier rules.

Rule 1: Prefer same address.
If either address is the destination address, choose that address as the
source address and terminate the entire algorithm.

Rule 2: Prefer appropriate scope.
If the scope of one address is preferable to the scope of the other address,
then the address with better scope is the better address of these two.

As an example, how is the scope of one source address (SA) preferable to
the scope of another source address (SB) for the given destination address
(D)?

v If scope of SA < scope of SB: If scope of SA < scope of D then SB is the
best address of SA and SB; otherwise SA is the best address.

v If scope of SB < scope of SA: If scope of SB < scope of D then SA is the
best address of SA and SB; otherwise SB is the best address.

Rule 3: Avoid deprecated addresses.
If one address is deprecated and the other is preferred, then the preferred
address is the better address of these two.

Rule 4: Use longest matching prefix.
If one address has a longer CommonPrefixLength with the destination than
the other address, then the address with the longer CommonPrefixLength is
the better address of these two.

Rule 5: Leave the order unchanged.
No rule selected a better address of these two; they are equally good.
Choose the first address as the better address of these two.

VIPA considerations with source address selection
If SOURCEVIPA is configured for the outbound interface and the application has not
requested that SOURCEVIPA be ignored (via Ignore Source VIPA socket option),
the source address will be selected from the SOURCEVIPA interface’s addresses.
Otherwise, source address will be selected from the outbound interface’s
addresses. Note that selection of a Source VIPA address for IPv6 is done differently
from IPv4. It is determined by the SOURCEVIPAINTERFACE parameter configured
on the outbound interface, rather than the order of the HOME list.

34 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

When a socket is used to establish a TCP connection to an IPv6 destination or to
send a UDP or RAW IP datagram to an IPv6 destination, the local address of the
socket is determined based on the following set of rules:

Table 4. Source address selection

Source address selection for communication
to IPv6 destinations

TCP, UDP, and RAW

IPCONFIG6
NOSOURCEVIPA

1. Is the socket already
bound to a local IPv6
address?

Do not change the local address, use it
as it is.

2. Is the socket unbound
(bound to the unspecified IP
address)?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

IPCONFIG6
SOURCEVIPA

1. Is the socket already
bound to a local IPv6
address?

Do not change the local address, use it
as it is.

2. Has setsockopt() with the
NOSOURCEVIPA option
been issued for the socket?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

3. Is there a
SOURCEVIPAINTERFACE
option on the IPv6
INTERFACE definition over
which the IP packet is about
to be sent?

Use the IPv6 source address selection
algorithm to select an IPv6 VIPA
address from the IPv6 virtual interface
pointed to by the
SOURCEVIPAINTERFACE option.

4. Is there no
SOURCEVIPAINTERFACE
option on the IPv6
INTERFACE definition over
which the IP packet is about
to be sent?

Use the IPv6 default source address
selection algorithm (selecting an IPv6
address on the physical interface over
which the IP packet is about to be sent).

Migration and coexistence

How to enable IPv6 communication between IPv6 islands in an IPv4
world

IPv6

IPv4

IPv6

N N

?

Figure 12. Communicating between IPv6 islands in an IPv4 world

Chapter 3. IPv6 protocol 35

Tunneling
Tunneling provides a way to utilize an existing IPv4 routing infrastructure to carry
IPv6 traffic. IPv6 nodes (or networks) that are separated by IPv4 infrastructure can
build a virtual link by configuring a tunnel. IPv6-over-IPv4 tunnels are modeled as
single-hop. That is, the IPv6 hop limit is decremented by 1 when an IPv6 packet
traverses the tunnel. The single-hop model serves to hide the existence of a tunnel.
The tunnel is opaque to users of the network, and is not detectable by network
diagnostic tools such as traceroute.

z/OS CS does not support being a tunnel endpoint. This means that the z/OS CS
stack will have to have an IPv6 interface connected to an IPv6 capable router. The
router will be relied upon to handle all tunneling issues.

For more information refer to “Tunneling” on page 107.

How to enable end-to-end communication between IPv4 and IPv6
applications

IPv6

IPv4

N

?

IPv6 Web Browser

IPv4 Web Server

Dual-mode stack
z/OS CS can be an IPv4-only stack or a dual-mode stack. There is no support for
an IPv6-only stack. By default, IPv6-enabled applications can communicate with
both IPv4 and IPv6 peers. There is a socket option that makes an IPv6-enabled
application require all peers to be IPv6. Refer to “Socket option to control IPv4 and
IPv6 communications” on page 82 for detailed information on the IPV6_V6ONLY
socket option.

IPv6 application on a dual-mode stack: An IPv6 application on a dual-mode
stack can communicate with IPv4 and IPv6 partners as long as it does not bind to a
native IPv6 address. If it binds to a native IPv6 address, then it cannot
communicate with an IPv4 partner, since the native IPv6 address cannot be
converted to an IPv4 address.

If a partner is IPv6, then all communication will use IPv6 packets.

If a partner is IPv4, the following will occur:

v Both source and destination will be IPv4-mapped IPv6 addresses.

Figure 13. Communicating between IPv4 and IPv6 applications

36 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

v On inbound, the transport protocol layer will map the IPv4 address to its
corresponding IPv4-mapped IPv6 address before returning to the application with
AF_INET6 addresses.

v On outbound the transport protocol layer will convert the IPv4-mapped addresses
to native IPv4 addresses and send IPv4 packets.

Dual mode z/OS IP Server Host

IPv4-only
Server

IPv6-enabled
Server

Transport Layer

IPv4 IPv6

Network
Interfaces

IPv4

IPv4

IPv4-only
IP host

IPv6

IPv6

IPv6-only
IP host

IPv4 application on a dual-mode stack: An IPv4 application running on a
dual-mode stack can communicate with an IPv4 partner. The source and destination
addresses will be native IPv4 addresses and the packet will be an IPv4 packet.

If a partner is IPv6 enabled and running on an IPv6-only stack, then communication
will fail. The partner only has a native IPv6 address (not an IPv4-mapped IPv6
address). The native IPv6 address for the partner cannot be converted into a form

Figure 14. IPv6 application on dual-mode stack

Chapter 3. IPv6 protocol 37

the AF_INET application will understand.

Dual mode z/OS IP Server Host

IPv4-only
Server

IPv6-enabled
Server

TCP, UDP,
and RAW

IPv4 IPv6

Network
Interfaces

IPv4

IPv4

IPv4-only
IP host

IPv6

IPv6

IPv6-only
IP host

Application Layer Gateways (ALG) and protocol translation
When IPv6-only nodes begin to appear in the network, AF_INET6 applications on
these nodes may need to communicate with AF_INET applications. For a
multihomed dual-mode IP host, it is a likely configuration that the host has both
IPv4 and IPv6 interfaces over which requests for host-resident applications are
received or sent. IPv4-only (AF_INET sockets) applications are not generally able to
communicate with IPv6 partners, which means that only the IPv4 partners in the
IPv4 network can communicate with those applications; an IPv6 partner cannot.

As soon as IPv6-only hosts are being deployed in a network, applications on those
IPv6-only nodes cannot communicate with the IPv4-only applications on the dual
mode hosts, unless one of multiple migration technologies are implemented either
on intermediate nodes in the network or directly on the dual mode hosts.

Figure 15. IPv4-only application on a dual-mode stack

38 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

There are numerous RFCs that describe solutions in this area. One solution is a
SOCKS64 implementation that works as a SOCKS server that relays
communication between IPv4 and IPv6 flows. SOCKS is a well-known technology
and the issues around it are familiar. Servers do not require any changes, but client
applications (or the stack on which the client applications reside) need to be
socksified to be able to reach out through a SOCKS64 server to an IPv4-only
partner.

Other solutions are based on a combination of network address translation, IP-level
protocol translation, and DNS-flow catcher/interpreter. These solutions all have
problems with application-level IP address awareness and end-to-end security.

Network Address Translation: IPv4 NAT translates one IPv4 (private) address into
another IPv4 (external) address. IPv6 NAT-PT translates an IPv4 address into an
IPv6 address. There are several limitations with NAT-PT:

v It is mandatory that all requests and responses pertaining to a session be routed
through the same NAT-PT translator.

v There is a protocol translation limitation since a number of IPv4 fields have
changed meaning in IPv6. Details of IPv4 to IPv6 protocol translation can be
found in the Stateless IP/ICMP Translation Algorithm (SIIT) RFC.

v If an application carries the IP address in the payload, ALGs need to be
incorporated.

v Lack of end-to-end security. The two end nodes that seek IPSec network level
security must both use IPv4 or IPv6.

v Translation of DNS messages and DNSSEC. An IPv4 end-node that demands
DNS replies be signed will reject replies that have been tampered with by
NAT-PT.

z/OS CS TCP/IP does not provide a SOCKS64 server and does not contain
NAT-PT functionality. If an IPv6-only client requires access to an IPv4-only server
running on z/OS, an external SOCKS64 or NAT-PT node is required to translate the
IPv6 packet to a corresponding IPv4 packet and vice versa.

Considerations for configuring z/OS for IPv6
The following section describes some general considerations for configuring IPv6 on
z/OS, including cases where multiple types of TCP/IP stacks are present. For
example, some users may be using the z/OS CS Anynet Sockets over SNA stack
and the z/OS CS TCP/IP stack on the same system. As a result the term stack or
TCP/IP stack in the following sections is used as a generic term that describes a
protocol stack that can be defined as a UNIX System Services AF_INET Physical
File System (PFS) in the BPXPRMxx parmlib member, such as z/OS CS TCP/IP or
z/OS CS Anynet Sockets over SNA.

IPv6 stack support

IPv4-only stack
Some TCP/IP stacks only support IPv4 interfaces and are only capable of sending
or receiving IPv4 packets. These TCP/IP stacks are generally referred to as
IPv4-only stacks, as they support IPv4 but do not support communication over IPv6
networks.

Chapter 3. IPv6 protocol 39

An IPv4-only stack supports AF_INET socket applications, but does not support
AF_INET6 socket applications.

Both z/OS CS TCP/IP and z/OS CS AnyNet® Sockets over SNA can be started as
IPv4-only stacks.

IPv6-only stack
An IPv6-only stack supports IPv6 interfaces but does not support IPv4 interfaces.
These TCP/IP stacks support AF_INET6 sockets and applications that use them, as
long as the IP addresses that are used are not IPv4-mapped IPv6 addresses. They
do not support AF_INET sockets. Applications can send and receive IPv6 packets
via an IPv6-only stack, but cannot send and receive IPv4 packets.

Neither z/OS CS TCP/IP nor z/OS CS AnyNet Sockets over SNA can be started as
an IPV6-only stack.

Dual-mode stack
Many IPv6 TCP/IP stacks support both IPv4 and IPv6 interfaces and are capable of
receiving and sending IPv4 and IPv6 packets over the corresponding interfaces.
Such TCP/IP stacks are generally referred to as a dual-mode stack IP stacks. This
does not mean there are two separate TCP/IP stacks running on such a node; it
just means that the TCP/IP stack has built-in support for both IPv4 and IPv6.

A dual-mode stack supports both AF_INET and AF_INET6 socket applications.
AF_INET applications are able to communicate using IPv4 addresses. IPv6-enabled
applications that use AF_INET6 sockets may communicate using both IPv6
addresses and IPv4 addresses (using the IPv4-mapped IPv6 address format).

z/OS CS TCP/IP can be started as a dual-mode stack, while AnyNet Sockets over
SNA cannot.

INET considerations

IPv4-only stack
An IPv4-only stack supports AF_INET applications, but does not support AF_INET6
applications. There are two ways to start an IPv4-only stack in an integrated
sockets environment:

v The first, and easiest, is to not code an AF_INET6 statement in BPXPRMxx. By
not enabling AF_INET6, the underlying TCP/IP stack will be started as an
IPv4-only stack, even if it is capable of supporting IPv6. This is the only way to
start z/OS CS TCP/IP as an IPv4-only stack in an integrated sockets
environment.

v The second way is to run a TCP/IP stack which is not capable of supporting
IPv6, such as AnyNet Sockets over SNA. When starting a TCP/IP stack which
does not support IPv6, the stack ignores any AF_INET6 definitions which may
appear in BPXPRMxx. As a result, the stack is started as an IPv4-only stack,
even when AF_INET6 is coded in BPXPRMxx.

When a TCP/IP stack is started as an IPv4-only stack in an Integrated Sockets
environment, applications can open AF_INET sockets, and can only send and
receive IPv4 packets over IPv4 interfaces. However, applications will be unable to
open AF_INET6 sockets.

40 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Dual-mode IPv4/IPv6 stack
When both AF_INET and AF_INET6 are coded in BPXPRMxx and a dual-mode
capable stack is started, both AF_INET and AF_INET6 sockets are supported by
the stack, and applications can send and receive IPv4 and IPv6 packets. To enable
AF_INET6 support in an integrated sockets environment, the following two
conditions must be met:

v AF_INET6 must be configured in BPXPRMxx. Note that AF_INET6 support may
be dynamically enabled by configuring AF_INET6 in BPXPRMxx and then issuing
the SETOMVS RESET= command to activate the new configuration.

v A dual-mode capable stack must be started after AF_INET6 is configured in
BPXPRMxx. Note that if a dual-mode capable TCP/IP stack is started before
configuring BPXPRMxx then it will remain an IPv4-only stack as long as it
remains active. However, if it is stopped and then restarted, it will restart as a
dual-mode TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it is
restarted.

To enable AF_INET6 support for z/OS CS TCP/IP, z/OS CS TCP/IP must be started
as a dual-mode stack. z/OS CS TCP/IP does not support being started as an
IPv6-only stack. Stated another way, if AF_INET6 is coded in BPXPRMxx, AF_INET
must also be coded. If it is not, then the z/OS TCP/IP stack will fail to initialize.

Common INET considerations

Enabling AF_INET6 support in a Common INET environment
To enable AF_INET6 support in a Common INET environment, the following two
conditions must be met:

v AF_INET6 must be configured in BPXPRMxx. Note that AF_INET6 support may
be dynamically enabled by configuring AF_INET6 in BPXPRMxx and then issuing
the SETOMVS RESET= command to activate the new configuration.

v At least one dual-mode capable stack must be started after AF_INET6 is
configured in BPXPRMxx. Note that any dual-mode capable TCP/IP stack started
before configuring BPXPRMxx will remain an IPv4-only stack as long as it
remains active. However, if it is stopped and then restarted, it will restart as a
dual-mode TCP/IP stack if AF_INET6 is configured in BPXPRMxx at the time it is
restarted.

If either condition is not met, then AF_INET6 support is not enabled.

Note: Starting some z/OS CS TCP/IP stacks with AF_INET6 support and some
without AF_INET6 support is not recommended. If AF_INET6 support is
dynamically enabled, you should stop and restart all TCP/IP stacks which
were active when AF_INET6 support was enabled, allowing these TCP/IP
stacks to become dual-mode stacks. Once this is done, all applications
which are capable of opening AF_INET6 sockets should be stopped and
restarted, which will allow the restarted applications to communicate over
IPv4 and IPv6 networks.

Disabling AF_INET6 support in a Common INET environment
There are two ways to disable AF_INET6 support in a Common INET environment:

v Stop all active dual-mode TCP/IP stacks while IPv4-only stacks remain active.
Applications will no longer be able to open AF_INET6 sockets, although they can

Chapter 3. IPv6 protocol 41

continue to use any AF_INET6 sockets which are already open and not bound to
one of the stopped dual-mode TCP/IP stacks. However, applications will be able
to open AF_INET sockets.

v Dynamically disable AF_INET6 in BPXPRMxx, and stop all dual-mode TCP/IP
stacks which are active. When restarted, the dual-mode capable TCP/IP stacks
will start as IPv4-only stacks. This is, in effect, a subset of the previous case. To
disable AF_INET6 support, issue the SETOMVS RESET= command to set the
AF_INET6 MAXSOCKETS value to 0.

Supporting a mixture of dual-mode stacks and IPv4-only stacks
When AF_INET6 sockets are supported, an IPv6-enabled application can use an
AF_INET6 socket to send and receive data with both IPv4 and IPv6 partners. When
communicating with an IPv6 partner, a native IPv6 address is used. When
communicating with an IPv4 partner, the IPv4 address is encoded as an IPv4-
mapped IPv6 address. When an IPv4-mapped IPv6 address is used on an
AF_INET6 socket, a dual-mode TCP/IP stack realizes the partner is attached to the
IPv4 network and routes packets over IPv4 interfaces.

As long as all TCP/IP stacks started in a Common INET environment provide native
support AF_INET6 sockets, socket calls can be passed directly to the underlying
TCP/IP stack. However, when both dual-mode stacks and IPv4-only stacks are
started in a Common INET environment, the IPv4-only stacks are not able to
process the native AF_INET6 socket calls. As a result, an application which uses
IPv4-mapped IPv6 addresses on an AF_INET6 socket needs transformations done
by Common INET to communicate with partners over any active IPv4-only stack.

To allow AF_INET6 applications to communicate with an IPv4 peer over IPv4-only
stack, Common INET provides AF_INET6 transformations. The AF_INET6
transformations convert AF_INET6 socket calls to the corresponding AF_INET
socket calls prior to sending them to an IPv4-only stack, and converts AF_INET
responses received from the IPv4-only stack to the corresponding AF_INET6
responses before making them available to the AF_INET6 application. Note that
even with this transformation, AF_INET6 applications must use IPv4-mapped IPv6
addresses to communicate with IPv4 applications.

42 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

The following figure shows a mixture of dual-mode stacks and IPv4-only stacks:

AF_INET6
socket

AF_INET6 PFS AF_INET6 PFS AF_INET PFS AF_INET PFS

AF_INET
socket

AF_INET6
Transformations

LFS

CINET

IPv4 Routes

IPv6 Routes

TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6

IPv6-only stack
(not supported on z/OS
- at a minimum, an IPv4
loopback address will
always be configured)

Dual Mode z/OS TCP/IP
Stack

IPv4-only TCP/IP Stack
(AnyNet, OEM, ?)

IPv4 and IPv6 IPv4

Network Interfaces Network Interfaces Network Interfaces

Configuration recommendations for a Common INET environment
If a mixture of dual-mode capable stacks and IPv4-only stacks are started in a
Common INET environment, it is recommended that the default stack be one of the
dual-mode capable stacks. Common INET routes certain requests to the default
stack, and this allows the stack with more functional capability to process these
requests.

If AF_INET6 support is dynamically configured in BPXPRMxx, it is recommended
that all dual-mode capable TCP/IP stacks be stopped and restarted. Once the
TCP/IP stacks have been stopped and restarted, all IPv6-enabled applications
should be stopped and restarted.

Figure 16. Mixing dual-mode and IPv4-only stacks

Chapter 3. IPv6 protocol 43

44 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Part 2. IPv6 enablement

This section contains the following chapters:

Chapter 4, “Configuring support for z/OS V1R4” on page 47 describes the IPv6
function provided in z/OS CS Version 1 Release 4 and how to enable it.

Chapter 5, “Configuration recommendations” on page 61 contains recommendations
and guidance information for implementing the IPv6 functions provided in z/OS CS
Version 1 Release 4.

© Copyright IBM Corp. 2002 45

46 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 4. Configuring support for z/OS V1R4

Before you begin

Ensure important features are supported over IPv6
Table 5. IPv6 supported features for z/OS CS V1R4

Link-layer device support Comments

OSA-Express in QDIO mode Fast and Gigabit Ethernet support for IPv6
traffic is configured via an INTERFACE
statement of type IPAQENET6.

Virtual IP Addressing support

Virtual Device/Interface Configuration for
static VIPA

This is configured via an INTERFACE
statement of type VIRTUAL6.

IP routing functions

Dynamic Routing - Autoconfiguration

Static Route Configuration This is configured via BEGINROUTES
statement.

Multipath Routing Groups Multipath is enabled via the IPCONFIG6
statement.

Accounting functions

SMF

Security functions

Stack and Port Access Control

Table 6. IPv6 supported applications for z/OS CS V1R4

Application Protocol Comments

Server applications

FTP Server TCP Kerberos/GSS security
protocol is not supported on
IPv6 connections. RACF®

allows all IPv6 clients to log
in to FTP server. You cannot
configure RACF to prevent
this. RFC 2428 restriction:
server requires data
connection to use same
protocol as control
connection.

Inetd server TCP

Otelnetd server TCP Kerberos/GSS security
protocol is not supported on
IPv6 connections.

Orshd server TCP Kerberos/GSS security
protocol is not supported on
IPv6 connections.

Orexecd server TCP

© Copyright IBM Corp. 2002 47

Table 6. IPv6 supported applications for z/OS CS V1R4 (continued)

Application Protocol Comments

UNIX named (BIND 9.2
based)

TCP,UDP

Client applications

FTP client TCP Kerberos/GSS security
protocol is not supported on
IPv6 connections. Only
connections to IPv4 FTP
servers are socksified.

UNIX rexec client TCP

Command-type applications

UNIX/TSO Netstat UDP

UNIX/TSO Traceroute UDP,Raw

UNIX/TSO Ping Raw

UNIX dig (BIND 9.2 based) TCP,UDP

UNIX nslookup (BIND 9.2
based)

TCP,UDP

UNIX nsupdate (BIND 9.2
based)

TCP,UDP

Assess automation and application impacts due to netstat and
message changes

Netstat output for stacks that are IPv6 enabled has a different format in order to
accommodate the longer IPv6 address. This becomes an issue when applications
that parse Netstat output are used. The same considerations also apply to
applications which use IP addresses in their automation since IP addresses now
have a longer format.

Determine how remote sites will connect to the local host
It is likely that clients that are not connected to a link which is directly attached to a
z/OS image will require access to servers which run on that z/OS image. Since
z/OS provides a dual-stack implementation, it allows z/OS to send IPv4 packets to
partner nodes which are connected to the IPv4 network, and IPv6 packets to
partner nodes which are connected to the IPv6 network. If the client node is
connected to the same routing infrastructure as the z/OS node, then traffic is routed
between z/OS and the client node via the native network transport.

In some instances, the two nodes may not be connected to the same routing
infrastructure. For instance, each node may be attached to distinct IPv6 networks
which are separated by an intermediate IPv4 network. When this occurs, tunneling
may be used to transmit the native IPv6 packets across the IPv4 network, allowing
nodes in the disjoint IPv6 networks to send packets to one another.

In V1R4, z/OS does not support being a tunnel endpoint. However, z/OS may route
traffic over a tunnel in the intermediate network. In this case, the tunnel endpoint
used by z/OS would be an IPv6/IPv4 router in the network which supports one of
several tunneling protocols. The tunnel endpoint used by z/OS may be attached to
the same LAN to which z/OS attaches, or may be attached to a remote network

48 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

link. In either case, the presence of the tunnel endpoint is transparent to z/OS, and
from the z/OS perspective traffic is routed over the native IPv6 network.

Avoid using IP addresses for identifying remote hosts
In IPv4 networks, some sites and applications attempt to use the remote IP address
to identify the client node which is connecting. In general, this is not a good idea for
IPv4, as the client address can often be unpredictable, either due to the client using
DHCP to obtain its address, or due to the client accessing the server from behind a
NAT (Network Address Translator) device.

In IPv6, the client address is likely to become even more volatile than it is in IPv4
networks. Using Stateless Address Autoconfiguration, a client’s address is
dynamically derived from the MAC address of the network adapter used for
connectivity. IPv6 also allows clients to pseudo-randomly generate IP addresses,
referred to as temporary addresses, which can be used for one or more
connections. These temporary addresses can be generated as frequently as the
client desires- once a day, once an hour, or even more frequently. And, in general,
the temporary addresses are not placed in the DNS, making it impossible to use
DNS to map the IP address to a host name.

The result is client IP addresses are unpredictable and subject to frequent change.
In addition, it is possible, and even likely, that a server will be unable to map the
client address to a host name. If a mechanism to identify the remote host is
required, then a different mechanism (client certificate, password, and so on) should
be used to identify the remote host.

Considerations when using BIND parameter on PORT statement
The PORT statement reserves a port for the use of a particular server. It normally
does not distinguish between IPv4 and IPv6; the port is reserved regardless of
which type of address the application uses. The BIND keyword on the PORT
statement allows you to force an INADDR_ANY listener to listen on a particular IP
address. You may now specify an IPv6 address on this keyword. INADDR_ANY
listeners will be converted to an IPv4 address, but will ignore an IPv6 address on
the BIND keyword. IN6ADDR_ANY listeners will be converted to either an IPv4
address (the IPv4-mapped form of that address) or an IPv6 address, depending on
what is specified with the BIND keyword.

If you use the BIND option, your server can only listen for IPv4 connections or IPv6
connections, but not both. To have the same service serve both IPv4 and IPv6
clients, you may need to start up two instances of it, one bound to an IPv4 address
and one to an IPv6 address.

The SHAREPORT keyword allows you to start multiple instances of the server and
have connections automatically load balanced between them. All IPv4 connection
requests will be load balanced between the set of IPv4 listeners (including
AF_INET6 IN6ADDR_ANY listeners), while all IPv6 connection requests will be load
balanced between the set of IPv6 listeners.

Security considerations
On z/OS V1R4, not all security features which are supported over an IPv4 transport
are enabled when communicating via an IPv6 transport. For instance, Stack and
Port Access Control, TLS, SSL, and Kerberos (Kerberos Version 5 and GSSAPIs)

Chapter 4. Configuring support for z/OS V1R4 49

are enabled for both IPv4 and IPv6, whereas IPSec and Intrusion Detection are
enabled for IPv4 but not for IPv6. Refer to Table 35 on page 119 for a list of
features supported for IPv4 and/or IPv6.

When a security function is supported over IPv4 but not over IPv6, the security
feature is exercised when data is transmitted over the IPv4 transport. This is true
whether the application uses AF_INET or AF_INET6 sockets. However, when an
AF_INET6 socket application communicates over the IPv6 transport, security
features which are only supported over IPv4 are not exercised. The result is that for
the same local application, some security features may be exercised when
communicating via IPv4, but not when communicating via IPv6.

To avoid creating a potential security exposure, it is important to determine if any
important security features are supported over IPv4 but not over IPv6 prior to
enabling AF_INET6 on a given LPAR. If only a subset of applications utilize such a
security feature, then it is sufficient to ensure that those applications communicate
only over the IPv4 transport. Several methods exist to ensure the IPv4 transport is
used:

v Verify the application uses AF_INET sockets. Applications which use AF_INET
sockets are only able to communicate via the IPv4 transport.

v Configure the application to bind to an IPv4 address. Applications which bind to
an IPv4 address are only able to communicate via the IPv4 transport.

v Use the BIND parameter on the PORT statement to cause the application to bind
to an IPv4 address.

Application programming considerations
Refer to Part 3, “Application enablement” on page 65 for information on application
programming considerations.

How to enable IPv6 support
The z/OS V1R4 Communications Server can be run as an IPv4-only stack or as a
dual-mode stack (IPv4 and IPv6). The BPXPRMxx parmlib member determines
which mode is used. The following configurations are possible:

v INET IPv4 only

v INET IPv4/IPv6 dual-mode stack

v CINET IPv4 only

v CINET IPv4/IPv6 dual-mode stack

Once a stack has been started, you cannot change its mode without stopping and
restarting the stack.

You can configure either a single AF_INET or both AF_INET and AF_INET6.
Although coding AF_INET6 alone is not prohibited, TCPIP will not start since the
master socket is AF_INET and the call to open it will fail.

IPv4-only BPXPRMxx sample definition:
FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

INET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition:

50 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Dual-mode stack support is defined by using two NETWORK statements (one for
AF_INET and one for AF_INET6) in the BPXPRMxx parmlib member. For example:
FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(3000)
TYPE(INET)

Separate MAXSOCKETS values are supported. The IPv6 default will be the IPv4
specified value.

CINET IPv4-only BPXPRMxx sample definition:

Multiple TCP/IP stacks in one MVS image or LPAR are only supported by using
Common INET (CINET). Each TCP/IP stack is defined in the BPXPRMxx parmlib
member using a SUBFILESYSTYPE statement. These definitions are identical to
what was used prior to IPv6 support. The following example shows the definitions
for three IPv4 only stacks:
FILESYSTYPE TYPE(CINET) ENTRYPOINT (BPXTCINT)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(CINET)
INADDRANYPORT(20000)
INADDRANYCOUNT(100)

SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

CINET IPv4/IPv6 dual-mode stack BPXPRMxx sample definition:

Dual-mode stack (IPv4/IPv6) support is defined by using two NETWORK
statements in the BPXPRMxx member. Each TCP/IP stack is defined in the
BPXPRMxx parmlib member with SUBFILESYSTYPE. All z/OS CS stacks defined
under the two NETWORK statements will be IPv4/IPv6 stacks. The following
example shows the definitions for three dual (IPv4/IPv6) stacks:
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(CINET)
INADDRANYPORT(20000)
INADDRANYCOUNT(100)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(3000)
TYPE(CINET)

SUBFILESYSTYPE NAME(TCPCS) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS2) TYPE(CINET) ENTRYPOINT(EZBPFINI)
SUBFILESYSTYPE NAME(TCPCS3) TYPE(CINET) ENTRYPOINT(EZBPFINI)

Chapter 4. Configuring support for z/OS V1R4 51

Enabling AF_INET6 support in z/OS Communications Server

Configuring z/OS CS IPv6 support
The following configuration statements have been added or changed to allow IPv6
addresses to be configured. Refer to the z/OS Communications Server: IP
Configuration Reference for detailed information on each of these statements.

Changed statements:

BEGINROUTES
Code this statement to add static IPv6 routes to the IP routing table.
BEGINROUTES with IPv6 addresses coded will be rejected if the stack is
not enabled for IPv6. The GATEWAY statement does not support IPv6
routes.

PKTTRACE
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

PORT (BIND IP address)
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

DELETE PORT (BIND IP address)
IPv6 must be enabled for IPv6 addresses to be coded on these
configuration statements.

IPCONFIG
A FORMAT keyword has been added to control the format of the command
output if the stack is not enabled for IPv6.

New statements:

INTERFACE
An IPv6-enabled stack still uses DEVICE and LINK to define IPv4
interfaces. However, you cannot use DEVICE and LINK to define IPv6
interfaces. You must use the INTERFACE statement to define IPv6
interfaces. The stack must be enabled for IPv6 to use this statement.

IPCONFIG6
This statement will be rejected if the stack is not enabled for IPv6. However,
the SOURCEVIPA option has a dependency on the INTERFACE statement.
You must specify the SOURCEVIPAINTERFACE keyword on the
INTERFACE statement for each interface on which you desire that
SOURCEVIPA take effect.

Resolver
IPv6 support introduces several changes to how host name and IP address
resolution is performed. These changes affect several areas of resolver processing,
including:

v New resolver APIs are introduced for IPv6 enabled applications. Refer to “Name
and address resolution functions” on page 72 for more details.

v New DNS resource records are defined to represent hosts with IPv6 addresses,
and therefore new network flows between resolvers and name servers (in place
of DNS IPv4 A records).

v A new algorithm is defined to describe how a resolver needs to sort a list of IP
addresses returned for a multihomed host. Refer to “Default destination address
selection” on page 32 for more information.

52 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

v New statements in the resolver configuration files are defined, and new search
orders are implemented for local host tables processing.

Resolver configuration
In order to avoid impacting existing IPv4 queries, the use of /etc/hosts,
HOSTS.LOCAL, HOSTS.SITEINFO, and HOSTS.ADDINFO files continue to be
supported for IPv4 addresses only. The HOSTS.SITEINFO and HOSTS.ADDRINFO
files continue to be generated from HOSTS.LOCAL file via MAKESITE utility.

ETC.IPNODES is a new local host file (in the style of /etc/hosts) which may contain
both IPv4 and IPv6 addresses. IPv6 addresses can only be defined in
ETC.IPNODES. The introduction of this file allows the administration of local host
files to more closely resemble that of other TCP/IP platforms and eliminates the
requirement of post-processing the files (specifically, MAKESITE).

The following new search order is used for selecting new ETC.IPNODES local host
files for IPv6 searches in MVS and UNIX environments:

1. GLOBALIPNODES

2. RESOLVER_IPNODES environment variable (UNIX only)

3. userid/jobname.ETC.IPNODES

4. hlq.ETC.IPNODES

5. DEFAULTIPNODES

6. /etc/ipnodes

IPv6 search order is simplified, but to minimize migration concerns, the IPv4 search
order continues to be supported as in previous releases. The side effect of this is
that by default, you would be required to maintain two different local host files (for
example, IPv4 addresses in HOSTS.LOCAL, IPv6 and IPv4 addresses in
ETC.IPNODES) for your system.

A much simpler approach is to utilize the new COMMONSEARCH statement in the
resolver setup file. By specifying COMMONSEARCH, the user indicates that only
the new IPv6 search order should be used, regardless of whether the search is for
IPv6 or IPv4 resources. This means that only one file (ETC.IPNODES) has to be
managed for the system, and that all the APIs utilize the same single file. The use
of COMMONSEARCH not only reduces IPv6 and IPv4 searching to a single search
order, but also reduces the z/OS UNIX and native MVS environments to a single
search order as well.

For detailed information on search orders, refer to z/OS Communications Server: IP
Configuration Guide.

IPv4-only configuration statements
Only IPv4 addresses may be specified on the NAMESERVER and NSINTERADDR
TCPIP.DATA statements. This implies that all resolver communications with a name
server will occur using AF_INET sockets, even when resource records related to
IPv6 addresses are being queried.

The other statement in the TCPIP.DATA data set that currently supports IP address
specification is the SORTLIST directive. SORTLIST is used for sorting IPv4
addresses only; the default destination address selection algorithm is used to sort
IPv6 addresses.

Chapter 4. Configuring support for z/OS V1R4 53

IPv6/IPv4 configuration statements
COMMONSEARCH/NOCOMMONSEARCH resolver setup statement:

Use these statements when a common local host file search order is to be used or
not used. The recommended COMMONSEARCH statement allows the same search
order of local host files be used for an IPv4 or a IPv6 query. It also allows the same
search order to be used in both the native MVS and z/OS UNIX environments.

GLOBALIPNODES resolver setup statement:

Use this statement to specify the global local host file.

DEFAULTIPNODES resolver setup statement:

Use this statement to specify the default local host file.

Steps for implementing the resolver functions
v Add new resolver setup statements.

v Create the IPNODES local host files.

v Add IPv6 resource records to DNS.

For detailed information on setting up the resolver, refer to the z/OS
Communications Server: IP Configuration Guide.

Resolver communications with the Domain Name System (DNS)
n order to retrieve IPv6 data from the proper name server, you must ensure that the
resolver configuration data set points to name servers that can resolve the IPv6
queries. A resolver does not have to communicate with a name server over an IPv6
network in order to retrieve IPv6 data. The z/OS resolver can only use IPv4 to
communicate with a name server.

DNS
With the introduction of 128-bit addresses, IPv6 makes it more difficult for the
network user to be able to identify another network user by means of the IP
address of the network device. The use of the DNS becomes even more of a
necessity.

The name resolution process over an IPv6 network or of names with IPv6
addresses is no different than in an IPv4 environment. It uses the same recursive
process, but different record types and content, and possibly a different network
transport.

z/OS CS ships two name servers, one based on BIND 4.9.3 and the other based
on BIND 9. The two z/OS CS name server versions are denoted as v4 and v9. Only
the v9 server and associated name server tools are IPv6-capable.

z/OS CS V1R4 adds support for the DNS name server listening for and responding
to queries over an IPv6 network using the following:

v New resource record types, AAAA and A6, which map the domain name to the
IPv6 address

v New reverse domains, ip6.arpa and ip6.int, which are used to support
address-to-domain name lookups

.

54 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Resolving names into IPv6 addresses
Your existing DNS domains will require name-to-address mappings for your IPv6
interfaces, including your IPv6 static VIPAs. This can be done using the quad-A
record (AAAA) or the A6 record. For more information on configuring AAAA and A6
records for IPv6, refer to the z/OS Communications Server: IP Configuration Guide.

AAAA records
These records provide the IPv6 equivalent for the IPv4 A records. AAAA records are
very similar to A records in how they are administered in DNS and in how stub
resolvers access them over the TCP/IP network. The basic difference between the
two is that AAAA records support IPv6 addresses which are four times larger than
IPv4 addresses (hence the quad A notation).

A6 records
These records provide another way to represent IPv6 addresses in DNS. The A6
resource record is experimental and is not recommended for use.

Resolving IPv6 addresses into names
This will involve the creation of entirely new reverse domains within the DNS.
Address-to-name mapping for IPv4 is done with the in-addr.arpa. However,
address-to-name mapping for IPv6 is done with the ip6.arpa and ip6.int domains.

ip6.arpa
The domain ip6.arpa is introduced to handle queries in a similar fashion as the
existing in-addr.arpa domain. For example, the IPv6 address
3ffe:8050:201:1860:42::1 could be represented using the nibble format as:
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.

ip6.int
The domain ip6.int is a second IPv6 reverse domain. It is almost identical to the
ip6.arpa domain:
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.int.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.

ip6.int was the original RFC standard domain for mapping IPv6 addresses to
names. Though the use of this domain has been deprecated by the IETF, many
older and relatively recent resolver implementations still rely on the ip6.int domain.
Configuring both the ip6.arpa and ip6.int domains will ensure access to DNS
reverse mapping records to users of all platforms.

DNS setup
Use the following steps as a guide to set up your DNS:

1. Add and modify statements in your name server configuration file.

v Add new reverse zone statements.

v Add IPv6-specific options (optional).

v Modify options which can take IPv4 or IPv6 addresses to include IPv6
information (optional).

2. Add IPv6-specific records to your existing forward zones (for hosts that are now
IPv6-capable).

v IPv6 address records - AAAA and A6

3. Create new IPv6 reverse zone files.

v IPv6 reverse domains: ip6.arpa and ip6.int

Chapter 4. Configuring support for z/OS V1R4 55

v Use the same PTR records from IPv4 with a similar label format.

Refer to z/OS Communications Server: IP Configuration Guide for detailed
information regarding DNS setup.

User exits
Several TCP/IP applications provide exit facilities that can be used for a variety of
purposes. Several of these exits include IP addresses or SOCKADDR structures as
part of the parameters passed to the exits.

The following exits are available to support IPv6 addresses:

v FTP - All FTP exits have been enhanced to support IPv6 addresses except for
FTPSMFEX. Samples for these exits are provided in SEZAINST. Refer to z/OS
Communications Server: IP Migration for more information on changes to these
exits:

– FTCHKCMD

– FTCHKCM1

– FTCHKCM2

– FTCHKJES

– FTCHKPWD

– FTPOSTPA

– FTPOSTPR

Which applications started with inetd are IPv6 enabled?
The following z/OS UNIX applications support IPv6 addresses:

v Internet daemon (inetd) server

v Remote execution (orexec) client

v Remote execution (orexecd) server

v Remote shell (orshd) server

v Telnet server (otelnetd)

What has to be changed?
The inetd.conf file must be modified to support the IPv6-enabled applications. For
the z/OS UNIX servers to support IPv6 connections, tcp6 must be specified for the
protocol of the service name in the inetd.conf file. When tcp6 is defined, IPv4 clients
are also supported.

The z/OS UNIX rsh server and Telnet server support Kerberos for IPv4 connections,
but not for IPv6 connections.

How does IPv6 affect SMF records?
Most of the TCP/IP SMF records currently contain IP addresses as part of their
content. The data in these records is typically processed by programs, some of
which are real-time SMF exits and others that post-process the SMF records after
the records are created. In z/OS V1R2, a new type of TCP/IP SMF record, type
119, was introduced. The type 119 SMF records were created to provide a
standardized structure for all SMF records provided by TCP/IP. This included a
standard representation of IP addresses appearing across all type 119 records. This
representation already uses the IPv6 address format, which in the V1R2 time frame

56 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

will always contain IPv4-mapped IPv6 addresses. Including IPv6 addresses in these
records should not require any changes to the SMF type 119 record formats or any
exits that process this data. Also, note that the type 119 records constitute a
superset of the older type 118 records in terms of data that is available. It is
recommended that users exploiting IPv6 migrate to the SMF 119 record.

The following records support IPv6 addresses in V1R4:

v FTP Client Transfer Completion

v FTP Server Transfer Completion

v FTP Server Logon Failure

v Port Statistics

v TCP Connection Initiation

v TCP Connection Termination

v UDP Socket Close

All other Type 119 SMF records do not include IPv6 information (for example, IP
statistics does not report IPv6 or ICMPv6 statistics).

Type 118 FTP client and server transfer completion records are generated for IPv6
connections. In this case, the FTP records will use IP addresses of
255.255.255.255 to indicate that the address cannot be included. All other type 118
SMF records are not generated for IPv6 connections.

For more information on SMF records, see the z/OS Communications Server: IP
Configuration Guide.

How does IPv6 affect SNMP?
Most of the SNMP functions are not yet IPv6 enabled. The SNMP TCP/IP Subagent
supports TCP scalar counter MIB objects from RFC 2012 and UDP scalar counter
MIB objects from RFC 2013. The values of these counters will reflect both IPv4 and
IPv6 processing. But the TCP/IP subagent’s interface, TCP connection table, and
UDP listener table data only reflect IPv4 processing.

Monitoring the TCP/IP network

How does IPv6 affect Netstat?
1. In order to accommodate full IPv6 address information, almost all of the Netstat

reports have been redesigned.

If the TCP/IP stack is IPv6 enabled, most reports will be displayed in a different
format that with IPv4. This may impact applications that are used to parse
Netstat output. The same considerations apply to applications which use IP
addresses in their automation since IP addresses now have a longer size. If the
TCP/IP stack is not IPv6 enabled, the report format is unchanged unless the
FORMAT LONG parameter is specified on the Netstat command or on the
IPCONFIG PROFILE statement.

2. IPv6 statistic information is added to the Netstat STATS/-S report.

3. Information regarding whether the stack is IPv6 enabled or not is added to the
Netstat UP/-u report.

4. For a server that opens an AF_INET6 socket, binds to INADDR6_ANY, and
does a socketopt with IPv6_V6ONLY against the socket, the local address
information in the connection related reports will contain the text (IPV6_ONLY).

Chapter 4. Configuring support for z/OS V1R4 57

Netstat ALLCONN/-a example on an IPv6 enabled stack:
MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 17:40:36
User Id Conn State
------- ---- -----
FTPABC1 00000021 Listen

Local Socket: 0.0.0.0..21
Foreign Socket: 0.0.0.0..0

FTPDV6 00000086 Listen
Local Socket: ::..21 (IPv6_ONLY)
Foreign Socket: ::..0

Control of output format
When the stack is IPv6-enabled, the report output will be displayed in the new
format, which is referred to as long format.

In order to allow the stack to be configured for IPv4-only operation (not
IPv6-enabled and short format displays), but still allow a developer who needs to
modify programs that rely on Netstat output to update and test new versions of
these programs with long format output from Netstat, the following output format
control options are available:

FORMAT SHORT
The output is displayed in the existing IPv4 format.

FORMAT LONG
The output is displayed in the format which supports IPv6 addresses.

A stack-wide output format parameter (FORMAT SHORT/LONG) can be specified
on the IPCONFIG profile statement. It will instruct Netstat to produce output in one
of the above formats. FORMAT SHORT is only applicable when the stack is not
IPv6 enabled.

In addition to the stack-wide FORMAT parameter, a Netstat command line option
FORMAT/-M with keyword SHORT/LONG is supported to override the stack-wide
parameter. Whenever a user specifies the Netstat command line format option, it
will override the stack-wide format parameter on an IPv4-only stack.

What has changed?
The following Netstat reports have been modified to support IPv6:

v Netstat ALL/-A

v Netstat ALLCONN/-a

v Netstat BYTEINFO/-b

v Netstat CONFIG/-f

v Netstat CONN/-c

v Netstat DEVLINKS/-d

v Netstat HOME/-h

v Netstat PORTLIST/-o

v Netstat ROUTE/-r

v Netstat SOCKET/-s

v Netstat STATS/-S

v Netstat TELNET/-t

v Netstat UP/-u

The following Netstat report is added to display Neighbor Discovery cache
information:

v Netstat ND/-n

58 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

The IP address filter support, IPADDR/-I, is enhanced to accept both IPv4 and IPv6
addresses.

Note: The Netstat GATE/-g is not enhanced to support IPv6 routes. Netstat
ROUTE/-r is the recommended alternative.

For more detailed information regarding Netstat, refer to z/OS Communications
Server: IP System Administrator’s Commands.

How does IPv6 affect Ping and Traceroute?
Ping and Traceroute provide the following support for IPv6:

v IPv6 IP addresses, or host names that resolve to IPv6 IP addresses, can be
used for destinations.

v IPv6 IP addresses can be used as the source IP address for the command’s
outbound packets.

v IPv6 IP addresses or interface names can be used as the outbound interface.

v A new ADDRTYPE/-A command option can be specified to indicate whether an
IPv4 or IPv6 IP address should be returned from host name resolution.

v IPv4-mapped IPv6 IP addresses are not supported for any option value.

Diagnosing problems

How does IPv6 affect IPCS?
IPCS formatting has been enhanced for IPv6 for TCPIPCS dump analysis and
CTRACE components SYSTCPIP and SYSTCPDA. For detailed information
regarding IPCS, refer to z/OS Communications Server: IP Diagnosis.

How does IPv6 affect packet and data tracing?
Packet and data trace functions have been enhanced for IPv6 to allowing tracing of
IPv6 addresses. For detailed information regarding trace functions, refer to z/OS
Communications Server: IP Diagnosis.

Chapter 4. Configuring support for z/OS V1R4 59

60 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 5. Configuration recommendations

Connecting to an IPv6 Network
z/OS CS TCP/IP supports IPv6 network access via OSA-Express in QDIO mode
using Fast Ethernet or Gigabit Ethernet. For LPAR to LPAR communication, IPv6
uses an intermediate LAN. This can be a shared OSA-Express adapter, two
OSA-Express adapters on the same LAN, or two OSA-Express adapters on
different LANs.

A single physical LAN can carry both IPv4 and IPv6 packets over the same media.
While the physical network is shared, from a logical view there are two separate
LANs, one carrying IPv4 traffic and one carrying IPv6 traffic. A single OSA-Express
port can be used to carry both IPv4 and IPv6 traffic simultaneously.

To transport IPv6 traffic to another host, z/OS CS TCP/IP must be connected via an
OSA-Express adapter to a native IPv6 LAN. Note that a router within the network
may tunnel the IPv6 packet across an IPv4 network to a remote IPv6 LAN or host.
However, z/OS CS TCP/IP cannot be the tunnel endpoint, and the tunneling by an
intermediate router is transparent to z/OS CS TCP/IP.

IPv6 address assignment

Use stateless address autoconfiguration for physical interfaces
IPv6 addresses for physical interfaces may be manually defined or may be
automatically assigned by stateless address autoconfiguration. It is recommended
that stateless address autoconfiguration be used for this assignment. Using
stateless address autoconfiguration reduces the amount of definition required to
enable IPv6 support, while making future site renumbering simpler.

Use static VIPAs
Using static VIPAs removes hardware as a single point of failure for connections
being routed over the failed hardware. It is recommended that at least one static
VIPA be configured for each LAN to which z/OS CS TCP/IP is connected. Each
VIPA thus configured should be associated with all OSA-Express adapters
connected to that same LAN.

Static VIPAs must be manually configured; z/OS CS TCP/IP does not support
stateless address autoconfiguration for VIPAs.

Selecting the network prefix
The network prefix for a static VIPA should be selected from the set of on-link
prefixes which are advertised by one or more routers attached to the LAN. By using
an on-link prefix, hosts and routers attached to the LAN will use neighbor discovery
address resolution to obtain a link-layer address for the VIPA. z/OS CS TCP/IP will
select a link-layer address of an attached physical interface when responding to the
query, and the attached host or router will forward the packet to z/OS CS TCP/IP.
This avoids the need to define static routes for VIPAs at hosts and routers attached
to the same LAN as z/OS CS TCP/IP.

z/OS CS TCP/IP does not perform duplicate address detection for VIPAs, as they
are not assigned to a physical interface attached to the LAN. To avoid possible
address collisions, it is recommended that the network prefix used for static VIPAs

© Copyright IBM Corp. 2002 61

is configured so that autonomous autoconfiguration is not enabled. In doing so, the
network prefix will not be used by hosts for autoconfiguring IPv6 addresses using
stateless address autoconfiguration.

Selecting the interface identifier
The interface identifier for a VIPA must be unique among all IP addresses which are
created using the combination of network prefix and interface identifier. Any scheme
may be used in generating the interface identifiers, so long as they are unique. By
using a network prefix which is not used by stateless address autoconfiguration, it is
only necessary to ensure the interface identifier is unique among all VIPAs which
are sharing the same network prefix.

Effects of site renumbering on static VIPAs
When renumbering a site, new network prefixes are assigned to subnetworks. The
existing network prefixes are marked as deprecated, during which time either the
new prefixes or the old, deprecated prefixes may be used. After some time period,
the deprecated network prefixes are deleted, along with all IPv6 addresses which
use the network prefix.

For addresses which are autoconfigured, this process is automatically managed by
stateless address autoconfiguration algorithms. For manually defined addresses,
including all VIPAs, the process must be managed manually. When a prefix is to be
deprecated, addresses which use the prefix should be deprecated using the
INTERFACE DEPRADDR statement. Once the prefix has expired, addresses which
use the prefix should be deleted using the INTERFACE DELADDR statement.

Update DNS definitions

Include static VIPAs in DNS
It is recommended that static VIPAs be included in DNS, in both the forward and
reverse zones. If VIPAs are used, it is unnecessary to include IPv6 addresses
assigned to interfaces.

Define both IPv4-only host names and IPv4/IPv6 host names
In general, IPv6 connectivity between two hosts is preferred over IPv4 connectivity.
In many cases, IPv4 be used only if one of the nodes does not support IPv6. This
can lead to undesirable paths in the network being used for communication
between two hosts. For instance, when a native IPv6 does not exist, data may be
tunneled over the IPv4 network, even when a native IPv4 path exists.

This may lead to longer connection establishment to an AF_INET application which
resides on a dual-stack host. The client will first attempt to connect using each IPv6
address defined for the dual-stack host before attempting to connect via IPv4. A
well-behaved client will cycle through all the addresses returned and will, ultimately,
connect using IPv4. However, this takes both time and network resources to
accomplish, and not all clients are well-behaved or bug-free.

To avoid undesirable tunneling, as well as other potential problems, it is
recommended that two host names be configured in DNS. The existing host name
should continue to be used for IPv4 connectivity, so as to minimize disruption when
connecting to unmodified AF_INET server applications. A new host name should
also be defined, for which both IPv4 and IPv6 should be configured. When
connecting using the old host name, AF_INET6 clients will connecting using IPv4.
When connecting using the new host name, AF_INET6 clients will attempt to
connect using IPv6 and, that failing, will fall back and connect using IPv4.

62 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Using two host names allows the client to choose the network path which will be
taken. The client can route over IPv6 when the destination application is IPv6
enabled and a native IPv6 path exists, or take an IPv4 path.

It should be noted that the use of distinct host names for IPv4 and IPv4/IPv6
addresses is not strictly required. A single host name can be used to resolve to both
IPv4 and IPv6 addresses. In addition, the use of distinct host names is only
necessary during the initial transition phase when native IPv6 connectivity does not
exist and applications have not yet been enabled for IPv6. Once both of these
occur, a single host name may be used.

Use source VIPA
It is recommended that source VIPA be configured on IPv6 hosts. Using source
VIPA allows an IPv6 address to be resolved to a host name, assuming the
recommendations in “Update DNS definitions” on page 62 are implemented.

Define static routes to improve network path selection
Hosts are able to learn default routes from routers attached to local LANs via
neighbor discovery algorithms. Hosts may then use the default routes when sending
packets to remote hosts. If a host selects a non-optimal router when sending data,
the router may redirect the host to use a more optimal router when sending data to
the remote host, as long as the optimal router is on the same LAN as the original
router.

When a host is connected to multiple LANs, this processing may result in
non-optimal network paths being used. For instance, if a host selects a router on
one LAN, but the optimal router is on another LAN, the router on the first LAN
cannot redirect the host to the second LAN. In this case, a static route may be
configured to allow the host to initially select the optimal network path.

When defining static routes, it is recommended the following guidelines be followed:

Use subnet routes instead of host routes
Remote IP addresses are difficult to predict. When using extensions to stateless
address autoconfiguration, some clients may change their IP addresses on a
routine basis, such as once an hour or once a day. In addition, these addresses
may be created using cryptographic algorithms, making it difficult to impossible to
predict what IP address a client may use. Defining static host routes to be used
when communicating with such a client is equally as difficult or impossible.

Instead of defining a host route, it is recommended that subnet routes be defined.
The network prefixes used in generating IPv6 addresses are much more stable than
the interface identifiers used by hosts, typically changing only when a site is
renumbered.

Use the link-local address of gateway router
When defining the gateway router for a static route, it is recommended that the
link-local address for the router be used. Link-local addresses do not change as the
result of site renumbering, minimizing potential updates to the static routes. This is
required in order to honor and process an ICMPv6 redirect message.

Chapter 5. Configuration recommendations 63

Effects of site renumbering on static routes
When a remote site is renumbered, new network prefixes are defined for the remote
site and the old network prefixes are deprecated. After a time period, the old
network prefixes are deleted.

A static route to a remote subnet should be created when a prefix is defined and
should remain as long as the prefix is either preferred or deprecated. Only when the
remote prefix is deleted should the static route be deleted.

Connecting to non-local IPv4 locations
If native IPv6 connectivity does not exist between two IPv6 sites, IPv6 over IPv4
tunneling may be used to provide IPv6 connectivity to the two sites. z/OS CS
TCP/IP can make use of an IPv6 over IPv4 tunnel to send packets to a remote site,
but cannot be used as a tunnel endpoint itself. Instead, an intermediate router
which supports IPv6 over IPv4 tunneling must act as the tunnel endpoint.

See “How to enable IPv6 communication between IPv6 islands in an IPv4 world” on
page 35 for more information on IPv6 over IPv4 tunnels.

IPv6-only application access to IPv4-only application
When an IPv6-only application needs to communicate with an IPv4-only host or
application, some form of IPv6-to-IPv4 translation or application-layer gateway must
occur. If needed, an outboard protocol translator or application-layer gateway
component must be used, as z/OS CS TCP/IP does not include such support.
There are various technologies which can be used, such as NAT-PT or SOCKS64.
See “Application Layer Gateways (ALG) and protocol translation” on page 38 for
more information.

64 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Part 3. Application enablement

Before reading this part, you should have a good understanding of the information
presented in Part 1, “IPv6 Overview” on page 1.

This part contains the following chapters:

Chapter 6, “API support” on page 67 describes the various z/OS socket APIs and
the level of IPv6 present for each API.

Chapter 7, “Basic Socket API extensions for IPv6” on page 71 describes basic
socket API changes that most applications would use.

Chapter 8, “Enabling an application for IPv6” on page 85 describes common issues
and considerations involved in enabling existing IPv4 socket applications for IPv6
communications.

Chapter 9, “Advanced socket APIs” on page 95 discusses advanced IPv6 API
functions that can be used by specialized IP applications.

For detailed information on specific APIs, refer to the following documentation:

v TCP/IP socket APIs are defined in the z/OS Communications Server: IP
Application Programming Interface Guide.

v UNIX (LE) C/C++ socket APIs are defined in the z/OS C/C++ Run-Time Library
Reference.

v UNIX Systen Services Callable APIs are defined in the z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

© Copyright IBM Corp. 2002 65

66 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 6. API support

UNIX System Services Callable BPX Sockets

P
as

ca
l A

P
I

TCP, UDP, and RAW Transport Protocol Layer

IPv4 and IPv6 Networking Protocol Layer

Network Interface Layer

Legend

APIs that will likely not be enabled for IPv6

APIs that are not currently enabled for IPv6
but will likely be enabled in a future release

APIs that are enabled for IPv6

CICS
sockets

R
E

X
X

 S
o

ck
et

s IMS
sockets

Sockets Extended Call API

Sockets Extended Macro API (EZASMI)

CS TCP/IP
C Sockets

LE (UNIX)
C/C++ Sockets

Application Programs and Subsystems

z/OS provides a versatile and diverse set of socket API libraries to support the
various z/OS application environments. The figure above describes the relationship
of the various z/OS socket APIs and the level of IPv6 present for each API.

There are two main socket API execution environments in z/OS:

v UNIX [implemented by UNIX System Services (Language Environment®)]

v Native TCP/IP (implemented by TCP/IP in z/OS CS)

UNIX Socket APIs

z/OS UNIX Assembler Callable Services
z/OS UNIX Assembler Callable Services is a generalized call-based interface to
z/OS UNIX IP sockets programming. This API supports both IPv4 and IPv6
communications. It includes support for the basic IPv6 API features and for a subset
of the advanced IPv6 API features. For more information, refer to the z/OS UNIX
System Services Programming: Assembler Callable Services Reference.

z/OS C sockets
z/OS UNIX C sockets is used in the z/OS UNIX environment. Programmers use this
API to create applications that conform to the POSIX or XPG4 standard (a UNIX
specification). This API supports both IPv4 and IPv6 communications. It includes
support for the basic IPv6 API features and for a subset of the advanced IPv6 API
features. For more information on this API, refer to the z/OS C/C++ Run-Time
Library Reference.

Figure 17. z/OS socket APIs

© Copyright IBM Corp. 2002 67

Native TCP/IP socket APIs
The following TCP/IP Services APIs are included in this library. For more
information on these APIs (excluding CICS), refer to z/OS Communications Server:
IP Application Programming Interface Guide.

Sockets Extended macro API
The Sockets Extended macro API is a generalized assembler macro-based
interface to IP socket programming. It includes support for IPv4 and for the basic
IPv6 socket API functions.

Sockets Extended Call Instruction API
The Sockets Extended Call Instruction API is a generalized call-based interface to
IP sockets programming. It includes support for IPv4 and for the basic IPv6 socket
API functions.

REXX sockets
The REXX sockets programming interface implements facilities for IP socket
communication directly from REXX programs by way of an address rxsocket
function. It includes support for IPv4 and for the basic IPv6 socket API functions.

CICS sockets
The CICS socket interface enables you to write CICS applications that act as clients
or servers in a TCP/IP-based network. Applications can be written in C language,
using the C sockets programming interface, or they can be written in COBOL, PL/I,
or assembler, using the Extended Sockets programming interface. This API
currently supports TCP/IP communications over IPv4 only but will likely support
IPv6 communications in a future release. For more information, refer to the z/OS
Communications Server: IP CICS Sockets Guide.

IMS sockets
The Information Management System (IMS) socket interface supports development
of client/server applications in which one part of the application executes on a
TCP/IP-connected host and the other part executes as an IMS application program.
The programming interface used by both application parts is the socket
programming interface. This API currently supports TCP/IP communications over
IPv4 only but will likely support IPv6 communications in a future release. For more
information, refer to z/OS Communications Server: IP IMS Sockets Guide.

Pascal API
The Pascal socket application programming interface enables you to develop
TCP/IP applications in the Pascal language. It only supports TCP/IP
communications over IPv4. It is unlikely that this API will be enhanced to support
IPv6 in the future. Applications using this API are encouraged to migrate their
application to one of the other socket APIs that are IPv6 enabled.

TCP/IP C/C++ Sockets
The C/C++ Sockets interface supports IPv4 socket function calls that can be
invoked from C/C++ programs. This API is very similar to the UNIX C socket API
which is the recommended socket API for C/C++ application development on z/OS.

68 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

The TCP/IP C/C++ sockets API will not be enhanced for IPv6 support. Existing
applications that will be enabled for IPv6 should consider migrating to the UNIX C
socket API.

Note: There are several higher level C/C++ APIs that rely on the TCP/IP sockets
for communications over an IP network, including:

v Resource Reservation Setup Protocol API (RAPI)

v Sun and NCS Remote Procedure Call (RPC)

v SNMP Agent Distributed Programming Interface (DPI®)

v X Window System and OSF/Motif

v X/Open Transport Interface (XTI)

These APIs do not support IPv6 communications.

Chapter 6. API support 69

70 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 7. Basic Socket API extensions for IPv6

All examples in this chapter are shown using LE C; see z/OS C/C++ Run-Time
Library Reference for details.

Introduction
While IPv4 addresses are 32 bits long, IPv6 interfaces are identified by 128-bit
addresses. The socket interface makes the size of an IP address visible to an
application; virtually all TCP/IP applications using sockets have knowledge of the
size of an IP address. Those parts of the API that expose the addresses must be
changed to accommodate the larger IPv6 address size. IPv6 also introduces new
features, some of which must be made visible to applications via the API. This
chapter describes the basic extensions to the socket interface and new features of
IPv6 as described in the Internet Engineering Task Force (IETF) draft, Basic Socket
Interface Extensions for IPv6.

Design considerations
The two main programming tasks associated with IPv6 exploitation involve
migrating existing application programs to support IPv6 and designing new
programs for IPv6. In both cases, the changed or new code should be designed so
that it is capable of using IPv4 or IPv6 addresses. Servers should be designed so
that they can communicate with both IPv4 and IPv6 clients. Existing IPv4 client and
server programs should continue to operate properly as long as only IPv4
connectivity is required between clients and servers.

The following discusses key differences between IPv4 and IPv6. It is assumed that
you have a basic knowledge of IPv4 socket programming for clients and servers.

Protocol families
IPv4 socket applications use a protocol family of AF_INET (equivalent to PF_INET).
For IPv6, a new protocol family of AF_INET6 (equivalent to PF_INET6) has been
defined. The protocol family is the first parameter to the socket() function that is
used to obtain a socket descriptor. For most applications, an AF_INET6 socket can
be used to communicate with IPv4 and IPv6 clients.

Address families
Most socket functions require a socket descriptor and a generic socket address
structure called a sockaddr. The exact format of the sockaddr structure depends on
the address family. For IPv4 sockets, the sockaddr structure is sockaddr_in. For
IPv6, the sockaddr structure sockaddr_in6 is used.

The following socket functions have a sockaddr as one of their parameters.

bind()
connect()
sendmsg()
sendto()
accept()
recvfrom()

© Copyright IBM Corp. 2002 71

recvmsg()
getpeername()
getsockname()

The sockaddr structure that is used in these functions must be the proper structure
for the socket family.

For IPv4 (AF_INET), the sockaddr (sockaddr_in) contains the following information:

Table 7. sockaddr format for AF_INET

sockaddr length 1 byte Not used, should be set to 0

family 1 byte AF_INET

port 2 bytes TCP or UDP port number

IP address 4 bytes IPv4 internet address

reserved 8 bytes Not used

For IPv6 (AF_INET6), the sockaddr (sockaddr_in6) contains additional information.
Also, note that the IP address for IPv6 is 16 bytes long instead of 4 bytes long as in
IPv4.

Table 8. sockaddr format for AF_INET6

sockaddr length 1 byte Not used, should be set to 0

family 1 byte AF_INET6

port 2 bytes TCP or UDP port number (same as v4)

flowinfo 4 bytes Flow information

IP address 16 bytes IPv6 internet address

scope ID 4 bytes Used to determine IP address scope

Special IP addresses
Like IPv4, IPv6 also defines loopback and wildcard (INADDR_ANY) addresses. The
differences are shown in the table below.

Table 9. Special IP addresses

IPv4 IPv6

Loopback address 127.0.0.1 ::1 (15 bytes of zeros, 1 byte of 1)

Wildcard address 0.0.0.0 :: (16 bytes of zeros)

Multicast address 224.0.0.1 - 239.255.255.255 Refer to “Multicast IPv6 Addresses”
on page 17

Name and address resolution functions
IPv6 introduces new APIs for the Resolver function. These APIs allow applications
to resolve host names to IP addresses and vice versa. The primary new APIs are
getaddrinfo, getnameinfo, and freeaddrinfo. The APIs are designed to work with
both IPv4 and IPv6 addressing. The use of these new APIs should be considered if
an application is being designed for eventual use in an IPv6 environment.

The manner in which hostname (getaddrinfo) or IP address (getnameinfo) resolution
is performed is dependent upon Resolver specifications contained in the Resolver

72 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

setup files and TCPIP.DATA configuration files. These specifications determine
whether the APIs will query a nameserver first, then search the local host tables, or
whether the order will be reversed, or even if one of the steps will be eliminated
completely. The specifications also control, if local host tables have to be searched,
which tables will be accessed. For detailed information on Resolver setup, refer to
“Resolver configuration” on page 53.

Protocol-independent nodename and service name translation
Getaddrinfo is conceptually a replacement for the existing gethostbyname and
getservbyname APIs. Getaddrinfo takes an input hostname, or an input
servicename, or both, and returns (when resolution is successful) one or more
addrinfo structures. Getaddrinfo can also accept as input, a hostname or a
servicename in numeric form, and will return the same value in presentation form
using the addrinfo structure. An addrinfo structure contains the following output
information:

v Pointer to sockaddr_in or sockaddr_in6 structure containing an IP address and
service port

v Length of sockaddr structure and family type (AF_INET, AF_INET6) of the
sockaddr structure

v Socktype and protocol values usable with this sockaddr structure

v Pointer to canonical name associated with the input hostname (applicable only in
the first addrinfo structure)

v Pointer to next addrinfo structure (set to 0 in the last element of the chain)

The storage for the addrinfo structures is allocated by the Resolver from the
application’s address space, and the application should use the freeaddrinfo API to
release the addrinfo structures when the information is no longer required. It is
recommended that the application not manipulate the chain of addrinfo structures
returned via getaddrinfo, but rather that the application simply return the entire
chain, as received, back to the Resolver via freeaddrinfo.

In addition tohostname or servicename, one of which must be present on a valid
getaddrinfo invocation, the application can specify additional input to the Resolver
on the getaddrinfo invocation. This input is optional, and if specified is passed via
an input addrinfo structure. The input settings include the following possibilities:

v Family type of sockaddr structure required on output.

v Socktype and protocol values for which the returned IP address and port number
must work. This would primarily be used for cases where a servicename was
being resolved, as might typically have been done previously via getservbyname.

v Various input flag settings:

– AI_ADDRCONFIG

– AI_ALL

– AI_CANONNAME

– AI_NUMERICHOST

– AI_NUMERICSERV

– AI_PASSIVE

– AI_V4MAPPED

In the absence of any specific input from the application, the Resolver will assume
that any sockaddr type is acceptable (that is, both IPv4 and IPv6 addresses) as
output. Thus, by default, the Resolver will search for both IPv6 and IPv4 address
via DNS and/or via local host files (such as /etc/hosts). Obviously, this may not

Chapter 7. Basic Socket API extensions for IPv6 73

always the best choice for the application issuing getaddrinfo. By using the above
input fields, an application issuing getaddrinfo() can influence the processing
performed by the Resolver function for that given request in the following ways:

v The application can specify that the sockaddr returned by getaddrinfo should be
of family type AF_INET, AF_INET6 or AF_UNSPEC (meaning either family type
would be acceptable). So, for example, if AF_INET is specified, the Resolver will
not perform any searches for IPv6 addresses for hostname, since the output
requested must be an IPv4 address.

v The application can specify:

– that both IPv6 and IPv4 addresses should be returned

– that IPv4 should only be returned if there are no IPv6 addresses resolved

– that only IPv6 addresses should be returned

– that only IPv4 addresses should be returned.

This information, indicated by the input combination of family type and the
AI_ALL and AI_V4MAPPED flags, controls to a large extent the types of
searches performed by the Resolver during the course of the processing.

v The application can specify that IPv6 addresses should only be returned when
the system has IPv6 interfaces defined, and can specify that IPv4 addresses
should only be returned when IPv4 interfaces are defined. This preference,
indicated via the AI_ADDRCONFIG flag, allows the application to eliminate
resolution searches looking for addresses that cannot be used anyway by the
application.

v The application can specify whether the sockaddr returned should contain an
address for passive (that is, the INADDR_ANY address) or active (that is, the
loopback address) socket activation. This choice is indicated via the AI_PASSIVE
flag, and is only applicable in the absence of an input hostname.

v The application can specify that only translation from presentation to numeric
format should be performed for hostname, or service name, or both. This option
is indicated by setting the AI_NUMERICHOST (for hostname) or
AI_NUMERICSERV (for servicename) flags, which indicate that the associated
input value must be in numeric format or the Getaddrinfo request should be
failed.

v The application can specify that only a given socktype or protocol value should
be used for looking up the port number associated with the input servicename, or
can request that all valid socktypes and protocols (TCP and UDP) be used for
the getservbyname processing. This preference is indicated via the socktype and
protocol settings.

With such a flexible interface, the application programmer must decide what inputs
make sense for the capabilities of the application being created or modified.
Table 10 on page 75 shows the two most likely application usages:

v IPv6 capable when the underlying system is IPv6 capable

v IPv4 capable only

74 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

and the suggested getaddrinfo input settings that coincide with that functionality.

Table 10. Getaddrinfo application capabilities 1

Application
capabilities

Sockaddr
family to
request

Additional flags
to set

Expected outputs

(IPv4 only)
Application is
pure IPv4, and
cannot handle
any IPv6
addresses.

AF_INET AI_ADDRCONFIG Getaddrinfo will return one or more
addrinfo structures, each pointing to
an IPv4 address saved in an
AF_INET sockaddr. No addrinfos will
be returned if there is no IPv4
interfaces defined on the system. No
searches of any kind will be
performed for IPv6 addresses as
part of this request.

(IPv6 capable)
Application
wants all known
addresses for
hostname, in
IPv6 format
when the
system supports
IPv6, or in IPv4
format
otherwise.

AF_UNSPEC AI_ADDRCONFIG,
AI_ALL -or
-AI_ADDRCONFIG,
AI_V4MAPPED,
AI_ALL

Getaddrinfo will return one or more
addrinfo structures, each pointing to
a sockaddr structure. The sockaddrs
will consist of one of the following
sets:

v All AF_INET6 sockaddrs,
containing IPv6 or mapped IPv4
addresses, if the system supports
IPv6 processing (only when
AI_V4MAPPED coded).

v AF_INET6 sockaddrs, containing
IPv6 addresses, and AF_INET
sockaddrs, containing IPv4
addresses, if the system supports
IPv6 processing (only when
AI_V4MAPPED is NOT coded).

v All AF_INET sockaddrs,
containing IPv4 addresses, if the
system does not support IPv6
processing.

In all cases, the IPv6 addresses will
be returned only if there is an IPv6
interface defined on the system, and
the IPv4 addresses will be returned
only if there is an IPv4 interface
defined.

An application with no interest in utilizing IPv6 will want to utilize the first entry in
Table 10. Otherwise, if there is some interest in utilizing IPv6 functionality, an
application would achieve the greatest amount of flexibility by using the second
table entry. Using the IPv6 entry approach, the application places the burden of
supplying a workable sockaddr structure on the Resolver logic. If IPv6 is supported
on the system, then the Resolver will endeavor to return AF_INET6 sockaddrs to
the application; otherwise, the Resolver will return AF_INET sockaddrs to the
application. The choice of coding or not coding AI_V4MAPPED in this situation
comes down to the application’s preference regarding receiving AF_INET6
sockaddrs: the more the application wants to deal exclusively with AF_INET6
sockaddrs, the more reason to code AI_V4MAPPED.

Table 10 should be sufficient for most application usages. However, there are other
likely application capability models possible, and Table 11 on page 76 provides

Chapter 7. Basic Socket API extensions for IPv6 75

some guidance on how to code the Getaddrinfo invocations for those applications.

Table 11. Getaddrinfo application capabilities 2

Application
capabilities

Sockaddr
family to
request

Additional flags
to set

Expected outputs

Application is
pure IPv6, and
cannot handle
any mapped
IPv4 addresses.

AF_INET6 AI_ADDRCONFIG Getaddrinfo will return one or more
addrinfo structures, each pointing to
an IPv6 address saved in an
AF_INET6 sockaddr. No addrinfos
will be returned if there is no IPv6
interfaces defined on the system. No
searches of any kind will be
performed for IPv4 addresses as
part of this request.

Application
prefers IPv6
addresses,
requires IPv6
address format,
but can handle
mapped IPv4
addresses if
necessary.

AF_INET6 AI_ADDRCONFIG,
AI_V4MAPPED

Getaddrinfo will return one or more
addrinfo structures, each pointing to
an AF_INET6 sockaddr. The
addresses within the sockaddrs will
consist of one of the following sets:

v All IPv6 addresses, if there is an
IPv6 interface defined on the
system and IPv6 addresses exist
for hostname

v All mapped IPv4 addresses, if
there were no IPv6 addresses to
be returned for hostname and
there was an IPv4 interface
defined for the system

Application
prefers IPv6
addresses, but
can handle
native IPv4
addresses if
necessary.

AF_UNSPEC AI_ADDRCONFIG Getaddrinfo will return one or more
addrinfo structures, each pointing to
a sockaddr structure. The sockaddrs
will consist of one of the following
sets:

v All AF_INET6 sockaddrs,
containing IPv6 addresses, if
there is an IPv6 interface defined
on the system and IPv6
addresses exist for hostname

v All AF_INET sockaddrs containing
IPv4 addresses, if there were no
IPv6 addresses to be returned for
hostname and there was an IPv4
interface defined for the system

Application
wants all known
addresses for
hostname, in
IPv6 format.

AF_INET6 AI_ADDRCONFIG,
AI_V4MAPPED,
AI_ALL

Getaddrinfo will return one or more
addrinfo structures, each pointing to
an AF_INET6 sockaddr. The
addresses within the sockaddrs will
consist of all IPv6 addresses, if
there is an IPv6 interface defined on
the system and mapped IPv4
addresses, if there is an IPv4
interface defined for the system,
associated with hostname.

76 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Table 11. Getaddrinfo application capabilities 2 (continued)

Application
capabilities

Sockaddr
family to
request

Additional flags
to set

Expected outputs

Application
wants all known
addresses for
hostname, in
native (IPv6 or
IPv4) format.

AF_UNSPEC AI_ADDRCONFIG,
AI_ALL

Getaddrinfo will return one or more
addrinfo structures, each pointing to
a sockaddr structure. The sockaddr
structures will be a mixture of
AF_INET6 sockaddrs (each
containing an IPv6 address) and
AF_INET sockaddrs (each
containing an IPv4 address). The
IPv6 addresses will be returned only
if there is an IPv6 interface defined
on the system, and the IPv4
addresses will be returned only if
there was an IPv4 interface defined
for the system.

Application
wants all known
addresses for
hostname,
regardless of
system
connectivity, in
native format.

AF_UNSPEC AI_ALL Getaddrinfo will return one or more
addrinfo structures, each pointing to
a sockaddr structure. The sockaddr
structures can be a mixture of
AF_INET6 sockaddrs (each
containing an IPv6 address) and/or
AF_INET sockaddrs (each
containing an IPv4 address),
depending on the address
resolution.

Default settings
when IPv6 is
enabled on the
system.

AF_UNSPEC NONE Getaddrinfo will return one or more
addrinfo structures, each pointing to
a sockaddr structure. The sockaddrs
will consist of one of the following
sets:

v All AF_INET6 sockaddrs,
containing IPv6 addresses, if
there is an IPv6 address defined
for hostname in any queried
domain name server or defined in
a local hosts table. No searches
for IPv4 addresses are performed
for hostname.

v All AF_INET sockaddrs,
containing IPv4 addresses, if
there are no IPv6 addresses
found for hostname.

In either case, the actual availability
of IPv6 or IPv4 interfaces on the
system is not taken into
consideration.

Chapter 7. Basic Socket API extensions for IPv6 77

Table 11. Getaddrinfo application capabilities 2 (continued)

Application
capabilities

Sockaddr
family to
request

Additional flags
to set

Expected outputs

Default settings
when IPv6 is
not enabled on
the system.

AF_UNSPEC NONE Getaddrinfo will return one or more
addrinfo structures, each pointing to
a sockaddr structure. The sockaddr
structures can be a mixture of
AF_INET6 sockaddrs (each
containing an IPv6 address) and/or
AF_INET sockaddrs (each
containing an IPv4 address),
depending on the address resolution
performed. The actual availability of
IPv6 or IPv4 interfaces on the
system in not taken into
consideration.

Regardless of the application model in use, and because output from getaddrinfo
can be a chain of addrinfo structures, the recommendation is that the application
attempt to use each address, in the order received, to open a socket and connect
or send a datagram to the target host name until it is successful, versus simply
using the first address and stopping if a failure is encountered.

The application is now responsible for freeing the storage (addrinfo and sockaddr
structures, and so on) associated with the new resolver APIs. The new freeaddrinfo
API should be used to free this storage. If the application neglects to perform this
step, the resolver will clean up the storage when the process terminates, but
storage constraints might occur before then if a large number of getaddrinfo APIs
are performed.

Socket address structure to host name and service name
Conceptually, Getnameinfo is a replacement for the existing gethostbyaddr and
getservbyport APIs. Getnameinfo takes an input IP address, or an input port
number, or both, and returns (when resolution is successful) the host name and/or
the service location. These parameters are passed in a sockaddr structure which
also contains the address family.

In addition to IP address or port number, one of which must be present on a valid
getnameinfo invocation, the application may specify additional input to the Resolver
on the getnameinfo invocation. This input is optional. The input settings include the
following (various input flag settings may be specified):

v NI_NOFQDN specifies that only the host name portion of the fully qualified
domain name (FQDN) is returned for local hosts.

v NI_NUMERICHOST specifies that the numeric form of the host name, its IP
address, is returned instead of its name. No resolution takes place for the
specified input if the NI_NUMERICXXXX flag is on.

v NI_NUMERICSERV specifies that the numeric form of the service name, the port
number, is returned instead of the service name.

v NI_NAMEREQD specifies that an error is returned if the host name cannot be
located. (If NI_NAMEREQD is not specified, the numeric form of the host name,
the IP address, is returned).

v NI_DGRAM specifies that the service is a datagram service (SOCK_DGRAM).
The default behavior is to assume that the service is a stream service.

78 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Address conversion functions
IP addresses often need to be provided to a socket application in character (string)
format. Also, it is common for socket applications to need to display IP addresses in
string format. Two new functions have been provided that work for IPv4 and IPv6
addresses.

inet_ntop Convert a binary IP address (either v4 or v6) into string format.

inet_pton Convert an IP address in string format to binary format.

The functions inet_ntoa and inet_addr are still available but are not usable for IPv6
addresses.

Table 12. Address conversion functions

Function USS Assembler
Callable services

C/C++ using
LE

REXX Socket
Extended
macro/call

inet_pton no yes no no

inet_ntop no yes no no

PTON no no no yes

NTOP no no no yes

Address testing macros
The following macros can be used to test for special IPv6 addresses.

Table 13. Address testing macros

Macros Assembler
Callable
services

C/C++
using LE

REXX Socket
Extended
macro/call

IN6_IS_ADDR_UNSPECIFIED no yes no no

IN6_IS_ADDR_LOOPBACK no yes no no

IN6_IS_ADDR_MULTICAST no yes no no

IN6_IS_ADDR_LINKLOCAL no yes no no

IN6_IS_ADDR_SITELOCAL no yes no no

IN6_IS_ADDR_V4MAPPED no yes no no

IN6_IS_ADDR_V4COMPAT no yes no no

IN6_IS_ADDR_MC_NODELOCAL no yes no no

IN6_IS_ADDR_MC_LINKLOCAL no yes no no

IN6_IS_ADDR_MC_SITELOCAL no yes no no

IN6_IS_ADDR_MC_ORGLOCAL no yes no no

IN6_IS_ADDR_MC_GLOBAL no yes no no

The macros behave in the following manner:

v The first seven macros return true if the address is of the specified type, or false
otherwise.

v The last five macros test the scope of a multicast address and return true if the
address is a multicast address of the specified scope, or false if the address is
either not a multicast address or not of the specified scope.

Chapter 7. Basic Socket API extensions for IPv6 79

v IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only for
the two types of local-use IPv6 unicast addresses (link-local and site-local), and
that by this definition, the IN6_IS_ADDR_LINKLOCAL macro returns false for the
IPv6 loopback address (::1). These two macros do not return true for IPv6
multicast addresses of either link-local scope or site-local scope.

Interface identification
IPv6 interfaces may have many different IP addresses. IPv6 allows a socket
application to specify an interface to use for sending data by specifying an interface
index. There are new socket options that allow specifying an interface index. Also,
socket options for IPv6 multicast join group and IPv6 multicast leave group allow
optional specification of an interface index.

A new function, if_nameindex(), has been provided to allow socket applications to
obtain a list of interface names and their corresponding index. Also, two new
functions, if_nametoindex() and if_indextoname() allow translation of an interface
name to its index and translation of an interface index to an interface name. The
function if_freenameindex() is used to free dynamic storage allocated by the
if_nameindex() function.

For non C/C++ (LE applications) a new ioctl function code (SIOCGIFNAMEINDEX)
is provided. Refer to Table 14 to determine which APIs support this new ioctl.

Table 14. Function calls

Function/IOCTL USS Assembler
Callable services

C/C++ using
LE

REXX Socket
Extended
macro/call

if_nametoindex no yes no no

if_indextoname no yes no no

if_nameindex no yes no no

SIOCGIFNAMEINDEX yes no yes yes

if_freenameindex no yes no no

Socket options to support IPv6 (IPPROTO_IPV6 level)
A group of socket options is defined to support IPv6. They are defined with a level
of IPPROTO_IPV6. The individual options begin with IPV6_ . These options are
only allowed on AF_INET6 sockets. In most cases, an IPV6_xxx option can be set
on an AF_INET6 socket that is using IPv4-mapped IPv6 addresses but will have no
effect. For example, the IPV6_UNICAST_HOPS socket option is used to set a hop
limit value in the IPv6 header. Since IPv4 packets are used with IPv4-mapped IPv6
addresses, the hop limit value will not be used.

Note that the Sockets Extended macro/call APIs do not use level as an input to
getsockopt() and setsockopt(). However, other IPv6 enabled APIs do. For detailed
information on setsockopt() and getsockopt() input and output refer to the API
specific documentation.

80 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Table 15. Socket options for getsockopt() and setsockopt()

Socket options
getsockopt()
setsockopt()

USS Assembler
Callable
services

C/C++ using
LE

REXX Sockets
Extended
macro/call

IPV6_UNICAST_HOPS yes yes yes yes

IPV6_MULTICAST_IF yes yes yes yes

IPV6_MULTICAST_LOOP yes yes yes yes

IPV6_MULTICAST_HOPS yes yes yes yes

IPV6_JOIN_GROUP yes yes yes yes

IPV6_LEAVE_GROUP yes yes yes yes

IPV6_V6ONLY yes yes yes yes

Option to control sending of unicast packets
IPV6_UNICAST_HOPS

The IPv6 header contains a hop limit field that controls the number of hops
over which a datagram can be sent before being discarded. This is similar
to the TTL field in the IPv4 header. The IPV6_UNICAST_HOPS socket
option can be used to set the default hop limit value for an outgoing unicast
packet. The socket option value should be between 0 and 255 inclusive. A
socket option value of -1 is used to clear the socket option. This will cause
the stack default to be used.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the stack’s default value will be returned.

The HOPLIMIT parameter on the IPCONFIG6 statement influences the
default hop limit when this socket option is not set. An application must be
APF-authorized or have superuser authority to set this option to a value
greater than the value of HOPLIMIT on the IPCONFIG6 statement. Refer to
the z/OS Communications Server: IP Configuration Reference for more
information about the IPCONFIG6 statement.

This function is similar to the IPv4 socket option IP_TTL.

Options to control sending of multicast packets
The following three options allow an application to control certain features in the
sending of IPv6 multicast packets. These socket options do not have to be set to
send multicast packets. Supplying a multicast address as the destination address is
the only thing required to send an IPv6 multicast packet.

IPV6_MULTICAST_IF
This socket option allows an application to control the outgoing interface
used for a multicast packet. The socket option value is the interface index
of the interface to be used.

A getsockopt() with this option will return the value set by setsockopt(). If a
setsockopt() has not been done, a value of 0 will be returned.

This function is similar to the IPv4 socket option IP_MULTICAST_IF.

IPV6_MULTICAST_HOPS
The IPv6 header contains a hop limit field that controls the number of hops
over which a datagram can be sent before being discarded. This is similar
to the TTL field in the IPv4 header. The IPV6_MULTICAST_HOPS socket
option can be used to set the default hop limit value for an outgoing

Chapter 7. Basic Socket API extensions for IPv6 81

multicast packet. The socket option value should be between 0 and 255
inclusive. A socket option value of -1 is used to clear the socket option. This
will cause the default value of 1 to be used.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the default value of 1 will be returned.

The default value is 1. An application must be APF-authorized or have
superuser authority to set this option to a value greater than the value of
HOPLIMIT on the IPCONFIG6 statement. Refer to the z/OS
Communications Server: IP Configuration Reference for more information
on the IPCONFIG6 statement.

This function is similar to the IPv4 socket option IP_MULTICAST_TTL.

IPV6_MULTICAST_LOOP
When a multicast packet is sent, if the sender belongs to the multicast
group to which the packet was sent then this option controls whether the
sender receives a copy of the packet or not. If this option is enabled, then
the sender receives a copy of the packet. The socket option value should
be 1 to enable the option, or 0 to disable the option.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the default value of 1 (enabled) will be
returned.

This function is similar to the IPv4 socket option IP_MULTICAST_LOOP.

Options to control receiving of multicast packets
IPV6_JOIN_GROUP

This socket option allows an application to join a multicast group on a
specific local interface. The socket option data specifies an IPv6 multicast
address and an IPv6 interface index. IPv4-mapped IPv6 multicast
addresses are not supported. If an interface index of 0 is specified, the
stack will select a local interface. An application that wants to receive
multicast packets destined for a multicast group needs to join that group. It
is not necessary to join a multicast group to send multicast packets.

Getsockopt() does not support this option.

This function is similar to the IPv4 socket option IP_ADD_MEMBERSHIP.

IPV6_LEAVE_GROUP
This socket option is used by an application to leave a multicast group it
previously joined. The socket option data specifies an IPv6 multicast
address and an IPv6 interface index. If an interface index of 0 is used to
join a multicast group, an interface index of 0 must be used to leave the
group.

Getsockopt() does not support this option.

This function is similar to the IPv4 socket option IP_DROP_MEMBERSHIP.

Socket option to control IPv4 and IPv6 communications
IPV6_V6ONLY

An AF_INET6 socket can be used for IPv6 communications, IPv4
communications, or a mix of IPv6 and IPv4 communications. The
IPV6_V6ONLY socket option allows an application to limit an AF_INET6
socket to IPv6 communications only. A nonzero socket option value will
enable the option; a value of 0 will disable the option.

82 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the default value of 0 (disabled) will be
returned.

If an application wants to enable this option, the setsockopt() must be set
prior to binding the socket, connecting the socket, or sending data over the
socket. This option cannot be changed (either enabled or disabled) after the
socket has been bound. (An implicit bind is done for datagram sockets on
connect or send operations if the socket is not already bound.)

Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP
levels

Socket options at the SOL_SOCKET and IPPROTO_TCP levels are not dependent
on the IP layer being used. They are supported for both AF_INET and AF_INET6
sockets.

Socket options at the IPPROTO_IP level support IPv4. They are not supported on
AF_INET6 sockets.

Not all socket options at these levels are supported by all APIs. Check the API
specific documentation for information on a specific socket option.

Chapter 7. Basic Socket API extensions for IPv6 83

84 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 8. Enabling an application for IPv6

Changes to enable IPv6 support
Several coding changes are needed to enable an application for IPv6
communications. Chapter 7, “Basic Socket API extensions for IPv6” on page 71
describes the changes to the basic Socket APIs that most applications use.
Chapter 9, “Advanced socket APIs” on page 95 describes the changes to advanced
functions (which are typically used by a small number of TCP/IP applications) of the
socket APIs that facilitate IPv6 communications. The sections in this chapter
describe some of the general considerations involved in enabling an application for
IPv6. Note that while many of the examples and references in this chapter assume
the use of C/C++ sockets supported by the Language Environment (LE) most of the
concepts (unless explicitly noted) apply to the other Socket API libraries that
support IPv6. For a more detailed description of the actual APIs refer to Chapter 7,
“Basic Socket API extensions for IPv6” on page 71 and Chapter 9, “Advanced
socket APIs” on page 95 and the documentation for the specific API you are using.
It is also assumed that readers of this chapter have some familiarity with IPv6 in
general and IPv6 support on z/OS CS. Parts 1 and 2 of this publication serve as a
good starting point for this background information.

Support for unmodified applications
During the transition period where networks, routers and hosts are upgraded to
support IPv6, it is expected that most IPv6 enabled hosts will also continue to have
IPv4 connectivity. This is accomplished with dual-mode stack support which allows
a single TCP/IP protocol stack to support both IPv4 and IPv6 communications.
TCP/IP on z/OS supports dual-mode stack operation. As a result, applications that
are not IPv6 enabled will continue to function, over an IPv4 network, without any
changes. However, at some point during the IPv6 deployment process, some IP
hosts may only have connectivity to IPv6 networks or have a TCP/IP protocol stack
that is only capable of IPv6 communications. Various migration and coexistence
techniques can be employed to allow IPv6-only hosts to communicate with
IPv4-only applications as described in “Migration and coexistence” on page 35.
However, in the absence of these mechanisms, an application will need to be
enabled for IPv6 in order to allow for communications with IPv6-only hosts or
applications.

Application awareness of whether system is IPv6 enabled
A z/OS system may or may not be enabled for IPv6 communications. Enabling a
z/OS system for IPv6 support requires explicit configuration by the system
administrator to allow AF_INET6 sockets to be created. As a result, an application
cannot typically assume that IPv6 will be enabled on the systems that the
application is running on. There may be exceptions to this rule. For example,
applications may run on a limited number of systems that are known to be IPv6
enabled. However, in general, most applications that are being enhanced to support
IPv6 must first perform a run-time test to determine whether IPv6 is enabled on the
system on which they are executing. If the system is not enabled for IPv6 then the
application should proceed with its existing IPv4 logic. If the system is enabled for
IPv6, the application can now use AF_INET6 sockets and features to communicate
with both IPv4 and IPv6 applications.

Determining if a system is enabled for IPv6 can be done by attempting to create an
AF_INET6 socket. If this operation is successful, the application can assume that

© Copyright IBM Corp. 2002 85

IPv6 is enabled. If the operation fails (with return code EAFNOSUPPORT) the
application should revert to its IPv4 logic and create an AF_INET socket.

Table 16. Using socket() to determine IPv6 enablement

Affected socket
API call

Changes required

socket() Specify AF_INET6 as the Address Family (or domain) parameter. This
API call will fail if the system is not enabled for IPv6.

An alternative mechanism that can be used by TCP/IP client applications to
determine whether IPv6 is enabled involves the use of the new getaddrinfo() API.
This API is a replacement for the gethostbyname() API and is typically used by
TCP/IP client programs to resolve a host name to an IP address. For example, a
client application that receives the server application’s host name or IP address
(such as FTP) as input can invoke the getaddrinfo() function prior to opening up a
socket with a selected set of options. This allows the application to receive a list of
addrinfo structures (one for each IP address of the destination host) that contain the
following information:

v The address family of the IP address (AF_INET or AF_INET6)

v A pointer to a socket address structure of the appropriate type (sockaddr_in or
sockaddr_in6) that is fully initialized (including the IP address and Port fields)

v The length of the socket address structure

With this information, a client application can be coded in a manner that allows it to
be protocol-independent without having to perform specific run-time checks to
determine whether IPv6 is enabled or not and without having to have dual-path
logic (IPv4 versus IPv6). An example of this approach follows:

86 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

When this example executes on a system where IPv6 is not enabled, only IPv4
addresses will be returned in AF_INET format (in sockaddr_in structures). When

int
myconnect(char *hostname)
{

struct addrinfo *res, *aip;
struct addrinfo hints;
char buf[INET6_ADDRSTRLEN];
static char *servicename = "21";
int sock = -1;
int error;

/* Initialize the hints structure for getaddrinfo() call.
This application can deal with either IPv4 or IPv6 addresses.
It relies on getaddrinfo to return the most appropriate IP address
and socket address structure based on the current configuration */

bzero(&hints, sizeof (hints));
hints.ai_socktype = SOCK_STREAM; /* Interested in streams sockets

only */
/* Note that we are asking for all IP addresses to be returned (IPv4

or IPv6) based on the system connectivity. Also, note that we
would prefer all addresses to be returned in sockaddr_in6 format
if the system is enabled for IPv6. In addition, we also specify
a numeric port using AI_NUMERICSERV so that the returned socket
address structures are primed with our port number. */

hints.ai_flags = AI_ALL | AI_V4MAPPED | AI_ADDRCONFIG |
AI_NUMERICSERV;

hints.ai_family = AF_UNSPEC;
error = getaddrinfo(hostname, servicename, &hints, &res);
if (error != 0) {

(void) fprintf(stderr,
"getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);

return (-1);
}

for (aip = res; aip != NULL; aip = aip->ai_next) {
/*
* Loop through list of addresses returned, opening sockets
* and attempting to connect()until successful. The
* The address type depends on what getaddrinfo()
* gave us.
*/

sock = socket(aip->ai_family, aip->ai_socktype,
aip->ai_protocol);

if (sock == -1) {
printf("Socket failed: %d\n",sock);
freeaddrinfo(res);
return (-1);

}
/* Connect to the host. */
if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {

printf("Connect failed, errno=%d, errno2=%08x\n",
errno, __errno2());
(void) close(sock);
sock = -1;
continue;

}
break;

}
freeaddrinfo(res);
return (sock);

}

Chapter 8. Enabling an application for IPv6 87

this identical example executes on a IPv6-enabled system, both IPv4 and IPv6
addresses will be returned, and the IPv4 addresses will be returned in IPv4-mapped
IPv6 address format (in sockaddr_in6 structures). Note that an AF_INET6 socket
can be used for the connection even when the address returned by getaddrinfo() is
an IPv4-mapped IPv6 address.

Socket address (sockaddr_in) structure changes
As mentioned in Chapter 7, “Basic Socket API extensions for IPv6” on page 71, the
socket address structure (sockaddr) is larger for IPv6 and has a slightly different
format. This structure is passed as input or output on several socket API calls. The
type of structure passed must match the address family of the socket being used on
the socket API call. As a result, application changes are necessary. The following
table describes the necessary changes:

Table 17. sockaddr structure changes

Affected Socket API calls Changes required

Bind(), connect(),
sendmsg(), sendto()

The length and type of sockaddr structure passed must
match the address family of the socket being used (structure
sockaddr_in or sockaddr_in6).

accept(), recvmsg(),
recvfrom(), getpeername(),
getsockname()

The sockaddr structure passed needs to be sufficently large
for the address family of the socket being used on these
APIs. Note that the larger sockaddr_in6 structure can be
passed even for AF_INET sockets. However, the application
needs to be aware that the format of the sockaddr structure
returned will depend on the address family of the input
socket.

UNIX System Services
BPX1SRX (Send/Recv CSM
buffers using sockets)

The length and type of sockaddr structure passed must
match the address family of the socket being used (structure
sockaddr_in or sockaddr_in6).

Address conversion functions
Since IPv6 addresses have a different format and size from IPv4 addresses,
changes are required when formatting these addresses for presentation purposes.
Two utility functions have been introduced for a selected set of socket APIs to help
applications perform this processing. Note that a formatted IPv6 address takes up
significantly more space than a formatted IPv4 address (46 bytes versus 16 bytes)
and this may affect the layout of any messages and displays that include an IP
address.

Table 18. Address conversion function changes

Affected API call Changes required

Translating an IP address from numeric form to
presentation form using inet_ntoa()

Convert to use inet_ntop() function. This
function can be used for both IPv4 and
IPv6 addresses.

Translating a presentation form IP address to
numeric form using inet_addr()

Convert to use inet_pton() function. This
function can be used for both IPv4 and
IPv6 addresses.

Resolver API processing
TCP/IP applications typically need to resolve a host name to an IP address and
sometimes need to resolve an IP address to a host name. Applications perform this
processing by invoking resolver APIs, such as gethostbyname() and

88 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

gethostbyaddr(). A new set of resolver APIs is introduced to support IPv6.
Applications that currently use resolver APIs need to be modified to use the new
APIs in order to be enabled for IPv6. The older resolver APIs continue to be
supported for IPv4 communications. For more information on resolver APIs, refer to
“Name and address resolution functions” on page 72.

Table 19. Resolver API changes

Affected API call Changes required

gethostbyname() Use new getaddrinfo() API. These APIs can be used even if the system
is not IPv6 enabled. Note that the freeaddrinfo() API needs to be issued
to free up storage areas returned by the getaddrinfo() API.

gethostbyaddr() Use the new getnameinfo() API. This API can also be used on a system
that is not IPv6 enabled.

Special IPv6 addresses
IPv4 provides two IP addresses that have special meaning in the context of socket
programs:

v The Loopback Address, typically 127.0.0.1, allows applications to connect() to or
send datagrams to other applications on the same host.

v The INADDR_ANY address (0.0.0.0) allows TCP/IP server applications that
specify it on a bind() call to accept incoming connections or datagrams across
any network interface configured on the local host.

The concept of these special IPv4 addresses is also available in IPv6. The changes
are described in the following table.

Table 20. Special IPv6 address changes

Socket API calls Changes required

Binding a socket to the IPv4 wildcard address
(INADDR_ANY - 0.0.0.0)

Specify IPv6 INADDR6_ANY (::) in the
sockaddr_in6 structure.

Using LOOPBACK (127.0.0.1) on bind(),
connect(), sendto(), sendmsg()

Specify IPv6 Loopback address (::1) in the
sockaddr_in6 structure.

Note: Refer to Chapter 7, “Basic Socket API extensions for IPv6” on page 71 for
details on any constant definitions available for these special IPv6 addresses
and the socket API you are using.

Passing ownership of sockets across applications using givesocket
and takesocket APIs

If your application is using the givesocket() and takesocket() APIs to pass
ownership of a socket from one program to another, some changes will be
necessary for IPv6 enablement. The givesocket() and takesocket() APIs now
support an address family of AF_INET6 for the socket being given or taken. The
address family specified by the program performing the takesocket() must match
the address family specified by the program that performed the givesocket(). As a
result, care should be taken in coordinating the updates for IPv6 support across the
partner applications performing givesocket and takesocket processing.

Chapter 8. Enabling an application for IPv6 89

Table 21. givesocket() and takesocket() changes

Affected API call Changes required

givesocket() Specify AF_INET6 (Decimal 19) as the domain when giving an
AF_INET6 socket.

getclientid() Specify AF_INET6 as the domain when dealing with an AF_INET6
socket.

takesocket() Specify AF_INET6 as the domain when taking an AF_INET6
socket.

Using multicast and IPv6
IPv6 provides enhanced support for multicast applications, including more
granularity in the scope of multicast addressing and new socket options to allow an
application to exploit this support. The following table lists IPv4 multicast
setsockopt() and getsockopt() options and the equivalent IPv6 multicast options.

Table 22. Multicast options

Multicast function IPv4 IPv6

Level specified on
setsockopt()/getsockopt()

IP_PROTO IPPROTO_IPV6

Joining a multicast group IP_ADD_MEMBERSHIP IPV6_JOIN_GROUP

Leaving a multicast group IP_DROP_MEMBERSHIP IPV6_LEAVE_GROUP

Select outbound interface for
sending multicast datagrams

IP_MULTICAST_IF IPV6_MULTICAST_IF

Set maximum hop count IP_MULTICAST_TTL IPV6_MULTICAST_HOPS

Enabling multicast loopback IP_MULTICAST_LOOP IPV6_MULTICAST_LOOP

In addition to the changes in the setsockopt() and getsockopt() options, the
input/output parameters specified for these options are also changed when
compared to IPv4. For example, selecting an outgoing interface for sending
multicast IPv6 datagram involves passing an interface index that identifies the
interface versus passing the IP address of the interface. For a detailed description
of the IPv6 multicast options refer to “Options to control sending of multicast
packets” on page 81.

An important consideration in updating your multicast application for IPv6 is how
these changes are provided to the other partner applications participating in these
multicast operations. For example, if a partner application in the network that is
receiving these multicast packets is not updated, then the application sending the
multicast datagrams may need to send them twice, once to an IPv4 multicast
address and once to an IPv6 multicast address. Also, note that in order to perform
this type of processing the application will need to create two separate sockets, an
AF_INET socket and a AF_INET6 socket. There is no support equivalent to
IPv4-mapped IPv6 addresses that would allow an AF_INET6 socket to be used in
sending IPv4 multicast packets. An alternative solution may be to first enable all the
receiver applications for IPv6 and then enable the sender applications.

90 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

IP addresses may not be permanent
Long-term use of an address is discouraged as IPv6 allows for IP addresses to be
dynamically renumbered. Applications should rely on DNS resolvers to cache the
appropriate IP addresses and should avoid having IP addresses in configuration
files.

Including IP addresses in the data stream
Applications that include IP addresses in the data they transmit over TCP/IP will
require changes when enabling for IPv6, as the IPv6 addresses have a different
format from IPv4 addresses. The following options may be considered in dealing
with these changes:

v Determine whether IP addresses are really needed in the data exchanged by the
applications.

v Change the processing of the partner applications to always send IP addresses
encoded using IPv6 format. In the case where IPv4 addresses are being used
they can be represented as IPv4-mapped IPv6 addresses.

v Include a version identifier that describes the format of the IP address being sent
(IPv4 or IPv6).

v Modify applications to use host names instead of IP addresses in the data
stream. This approach requires that the partner receiving the host name is able
to resolve it to an IP address. Also note that a single IP host may have multiple
IP addresses.

v In many cases you may not be able to change all partner applications in your
network at the same time. As a result, determining the type of IP address to send
is a key consideration. The following is a list of options that may be considered in
making this decision:

– Determine the level of support when the connection is established by
exchanging version or supported functions.

– Encode the IPv6 addresses using new options. If the option is rejected by the
peer, then it does not support IPv6

– Make the decision based on the partner application’s IP address. If the
partner’s source IP address is an IPv4 address then only use IPv4 addresses;
otherwise, use an IPv6 address. This option may cause an IPv6 enabled
partner application to be treated as an IPv4 partner if that application uses an
IPv4-mapped IPv6 address to connect.

Example of an IPv4 TCP server program
The following example shows a simple IPv4 TCP server program written in C. The
program opens a TCP socket, binds it to port 5000, and then performs a listen()
followed by an accept() call. When a connection is accepted the server sends a
Hello text string back to the client and closes the socket. This sample program is
later shown with the changes required to make it IPv6 enabled.

Chapter 8. Enabling an application for IPv6 91

Example of the simple TCP server program enabled for IPv6
The simple TCP server program is now shown with the changes (in bold) required
to allow it to accept connections from IPv6 clients.

/* simpleserver.c
A very simple TCP socket server

*/
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc,const char **argv)
{

int serverPort = 5000;
int rc;
struct sockaddr_in serverSa;
struct sockaddr_in clientSa;
int clientSaSize;
int on = 1;
int c;
int s = socket(PF_INET,SOCK_STREAM,0);
rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);
/* initialize the server’s sockaddr */
memset(&serverSa,0,sizeof(serverSa));
serverSa.sin_family = AF_INET;
serverSa.sin_addr.s_addr = htonl(INADDR_ANY);
serverSa.sin_port = htons(serverPort);
rc = bind(s,(struct sockaddr *)&serverSa,sizeof(serverSa));
if (rc < 0)
{

perror("bind failed");
exit(1);

}
rc = listen(s,10);
if (rc < 0)
{

perror("listen failed");
exit(1);

}
rc = accept(s,(struct sockaddr *)&clientSa,&clientSaSize);
if (rc < 0)
{

perror("accept failed");
exit(1);

}
printf("Client address is: %s\n",inet_ntoa(clientSa.sin_addr));
c = rc;
rc = write(c,"hello\n",6);
close (s);
close (c);
return 0;

}

Figure 18. IPv4 TCP server program

92 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

/*
A very simple TCP socket server for v4 or v6
*/

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main(int argc,const char **argv)
{

int serverPort = 5000;
int rc;
union {

struct sockaddr_in sin;
struct sockaddr_in6 sin6;

} serverSa;
union {

struct sockaddr_in sin;
struct sockaddr_in6 sin6;

} clientSa;

int clientSaSize = sizeof(clientSa);
int on = 1;
int family;
socklen_t serverSaSize;
int c;
char buf[INET6_ADDRSTRLEN];

int s = socket(PF_INET6,SOCK_STREAM,0);
if (s < 0)
{

fprintf(stderr, "IPv6 not active, falling back to IPv4...\n");
s = socket(PF_INET,SOCK_STREAM,0);
if (s < 0)
{

perror("socket failed");
exit (1);

}
family = AF_INET;
serverSaSize = sizeof(struct sockaddr_in);

}
else /* got a v6 socket */
{

family = AF_INET6;
serverSaSize = sizeof(struct sockaddr_in6);

}
printf("socket descriptor is %d, family is %d\n",s,family);

Figure 19. Simple TCP server program enabled for IPv6 (Part 1 of 2)

Chapter 8. Enabling an application for IPv6 93

rc = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof on);

/* initialize the server’s sockaddr */
memset(&serverSa,0,sizeof(serverSa));
switch(family)
{

case AF_INET:
serverSa.sin.sin_family = AF_INET;
serverSa.sin.sin_addr.s_addr = htonl(INADDR_ANY);
serverSa.sin.sin_port = htons(serverPort);
break;

case AF_INET6:
serverSa.sin6.sin6_family = AF_INET6;
serverSa.sin6.sin6_addr = in6addr_any;
serverSa.sin6.sin6_port = htons(serverPort);

}
rc = bind(s,(struct sockaddr *)&serverSa,serverSaSize);
if (rc < 0)
{

perror("bind failed");
exit(1);

}
rc = listen(s,10);
if (rc < 0)
{

perror("listen failed");
exit(1);

}
rc = accept(s,(struct sockaddr *)&clientSa,&clientSaSize);
if (rc < 0)
{

perror("accept failed");
exit(1);

}
c = rc;
printf("Client address is: %s\n",

inet_ntop(clientSa.sin.sin_family,
clientSa.sin.sin_family == AF_INET

? &clientSa.sin.sin_addr
: &clientSa.sin6.sin6_addr,

buf, sizeof(buf)));

if(clientSa.sin.sin_family == AF_INET6
&& ! IN6_IS_ADDR_V4MAPPED(&clientSa.sin6.sin6_addr))
printf("Client is v6\n");

else
printf("Client is v4\n");

rc = write(c,"hello\n",6);
close (s);
close (c);
return 0;

}

Figure 19. Simple TCP server program enabled for IPv6 (Part 2 of 2)

94 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 9. Advanced socket APIs

The advanced socket API for IPv6 support includes:

v IPv6 RAW socket support.

v New socket options.

v New ancillary data objects on sendmsg/recvmsg.

v Ability to receive inbound packet information including arriving interface index,
destination IP address, and hop limit via ancillary data.

v Ability to set outgoing packet information including interface to use, source IP
address, and hop limit. This may be set by socket options or ancillary data with
some restrictions.

Not all features of the advanced socket API for IPv6 have been implemented. UNIX
System Services C/C++ and UNIX System Services Assembler Callable APIs
support the advanced socket API for IPv6. The advanced socket API for IPv6 is not
implemented in Native TCP/IP socket APIs.

Controlling the content of the IPv6 packet header

Socket options and ancillary data to support IPv6 (IPPROTO_IPV6
level)

An application can use socket options to enable or disable a function for a socket.
An application can also provide a value to be used for a function with a socket
option. Once enabled, the option remains in effect for the socket until disabled.

An application can also use ancillary data on the sendmsg() API to enable a
function or provide a value for the packet being sent via sendmsg(). The value of
the ancillary data is only in effect for that packet. Note that the value of the ancillary
data can override a socket option value. For a detailed explanation of ancillary data
see “Using ancillary data on sendmsg() and recvmsg()” on page 100.

An application can also receive ancillary data on the recvmsg() API.

A group of advanced socket options and ancillary data is defined to support IPv6.
They are defined with a level of IPPROTO_IPV6 or IPPROTO_ICMPV6. The
individual options begin with IPV6_ and ICMP6_ respectively. These options are
only allowed on AF_INET6 sockets. In most cases, these options can be set on an
AF_INET6 socket that is using IPv4-mapped IPv6 addresses but will have no effect.
For example, the IPV6_HOPLIMIT ancillary data option is used to set a hop limit
value in the IPv6 header. Since IPv4 packets are used with IPv4-mapped IPv6
addresses, the hop limit value will not be used.

Table 23. Sockets options at the IPPROTO_IPV6 level

Socket options
getsockopt()
setsockopt()

Assembler
Callable
Services

C/C++ using
LE

REXX Sockets
Extended
macro/call

IPV6_USE_MIN_MTU Y Y N N

IPV6_RECVPKTINFO Y Y N N

IPV6_RECVHOPLIMIT Y Y N N

IPV6_PKTINFO Y Y N N

© Copyright IBM Corp. 2002 95

Table 23. Sockets options at the IPPROTO_IPV6 level (continued)

Socket options
getsockopt()
setsockopt()

Assembler
Callable
Services

C/C++ using
LE

REXX Sockets
Extended
macro/call

IPV6_CHECKSUM Y Y N N

Table 24. Ancillary data on Sendmsg() (Level = IPPROTO_IPV6)

Ancillary data on
sendmsg()

Assembler
Callable
Services

C/C++ using
LE

REXX Sockets
Extended
macro/call

IPV6_USE_MIN_MTU Y Y N N

IPV6_PKTINFO Y Y N N

IPV6_HOPLIMIT Y Y N N

IP_QOS_
CLASSIFICATION

Y Y N N

Table 25. Ancillary data on Recvmsg() (Level = IPPROTO_IPV6)

Ancillary data on
recvmsg()

Assembler
Callable
Services

C/C++ using
LE

REXX Sockets
Extended
macro/call

IPV6_PKTINFO Y Y N N

IPV6_HOPLIMIT Y Y N N

Option to request that minimum MTU size be used
IPV6_USE_MIN_MTU (used with TCP, UDP and RAW applications)

For IPv6, only the endpoint nodes may fragment a packet. Path MTU
discovery determines the largest packet that can be sent to a destination
without requiring fragmentation by an intermediate node (since that is not
supported). In some cases, an application may not want have the overhead
of path MTU discovery. All nodes in an IPv6 network are required to support
a minimum MTU of 1280 bytes. When an application enables this option,
the minimum MTU size (1280 bytes) will be used to send packets which
otherwise may have required fragmentation. This bypasses path MTU
discovery processing.

This option can be enabled or disabled for a socket with a setsockopt().
This option can be enabled or disabled for a single send operation with
ancillary data on the sendmsg(). A nonzero option value will enable the
option, a value of 0 will disable the option.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the default value of 0 (disabled) will be
returned.

Options to control the sending of packets for UDP and RAW
applications
IPV6_PKTINFO (used with UDP and RAW applications)

The IPV6_PKTINFO option allows the application to provide two pieces of
information:

v The source IP address for an outgoing packet

v The outgoing interface for a packet

96 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

The option value contains a 16-byte IPv6 address and a 4-byte interface
index. An application can provide a nonzero value for one or both pieces of
information.

This option can be enabled or disabled for a socket with a setsockopt().
This option can be enabled or disabled for a single send operation with
ancillary data on the sendmsg(). To disable the option, both the IPv6
address and the interface index should be specified as 0 in the option
value.

A getsockopt() with this option will return the value set by setsockopt(). If a
setsockopt() has not been done a value of 0 will be returned.

See “Understanding options for setting the source address” on page 102 for
a discussion of the interaction of socket options and ancillary data for the
setting of the source address. See “Understanding options for specifying the
outgoing interface” on page 102 for a discussion of the interaction of socket
options and ancillary data for determining the outgoing interface.

IPV6_HOPLIMIT (used with UDP and RAW applications)
The IPv6 header contains a hop limit field that controls the number of hops
over which a datagram can be sent before being discarded. This is similar
to the TTL field in the IPv4 header. The IPV6_HOPLIMIT option can be
used to set the hop limit value for an outgoing packet. The option value
should be between 0 and 255 inclusive. A value of -1 causes the TCP/IP
protocol stack default to be used.

This option can only be set with ancillary data on sendmsg(). It is not valid
on setsockopt().

Note that the IPV6_UNICAST_HOPS socket option and the
IPV6_MULTICAST_HOPS socket option are available to set a hop limit
value also. See “Understanding hop limit options” on page 101 for a
discussion of the interaction of IPV6_UNICAST_HOPS,
IPV6_MULTICAST_HOPS and IPV6_HOPLIMIT.

Options to provide information about received packets
IPV6_RECVPKTINFO (used with UDP and RAW applications)

The IPV6_RECVPKTINFO socket option allows an application to receive
two pieces of information:

v The destination IP address from the IPv6 header

v The interface index for the interface over which the packet was received

When the IPV6_RECVPKTINFO socket option is enabled, the IP address
and interface index will be returned as ancillary data on the recvmsg() API.
The ancillary data level will be IPPROTO_IPV6. The option name will be
IPV6_PKTINFO. For a detailed explanation of ancillary data see “Using
ancillary data on sendmsg() and recvmsg()” on page 100.

This option can only be enabled or disabled with a setsockopt().
IPV6_RECVPKTINFO is not valid as ancillary data on sendmsg(). A
nonzero option value will enable the option; a value of 0 will disable the
option.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the default value of 0 (disabled) will be
returned.

Chapter 9. Advanced socket APIs 97

IPV6_RECVHOPLIMIT (used with TCP, UDP and RAW applications)
The IPV6_RECVHOPLIMIT socket option allows an application to receive
the value of the hop limit field from the IPv6 header. When the
IPV6_RECVHOPLIMIT socket option is enabled, the hop limit will be
returned as ancillary data on the recvmsg() API. The ancillary data level will
be IPPROTO_IPV6. The option name will be IPV6_HOPLIMIT. For a UDP
or RAW application, if this option is enabled, the IPV6_HOPLIMIT ancillary
data will be returned with each recvmsg(). For a TCP application, if this
option is enabled, IPV6_HOPLIMIT ancillary data will only be returned on
recvmsg() when the hop limit value being used has changed. For a detailed
explanation of ancillary data see “Using ancillary data on sendmsg() and
recvmsg()” on page 100.

This option can only be enabled or disabled with a setsockopt().
IPV6_RECVHOPLIMIT is not valid as ancillary data on sendmsg(). A
nonzero option value will enable the option; a value of 0 will disable the
option.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the default value of 0 (disabled) will be
returned.

Option to provide checksum processing for RAW applications
IPV6_CHECKSUM (used with RAW applications)

The IPV6_CHECKSUM socket option can be used by a RAW application to
enable checksum processing to be done by the TCP/IP protocol stack for
packets on a socket. When enabled, the checksum will be computed and
stored for outbound packets; the checksum will be verified for inbound
packets. Note that this socket option is not applicable for ICMPv6 RAW
sockets because the TCP/IP protocol stack will always provide checksum
processing for them.

This option can only be enabled or disabled with a setsockopt().
IPV6_CHECKSUM is not valid as ancillary data on sendmsg(). The option
value provides the offset into the user data where the checksum field
begins. The option value should be an even number between 0 and 65534
inclusive. A value of -1 causes the option to be disabled.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the value of -1 (disabled) will be
returned.

Option to provide QoS classification data
IP_QOS_CLASSIFICATION (used with TCP applications)

This option allows the application to provide QoS classification data. It is a
z/OS CS-specific ancillary data type, and is not associated with the IPv6
Advanced Socket API. It can be specified as ancillary data on sendmsg()
for AF_INET and AF_INET6 sockets. For AF_INET sockets the level
specified should be IPPROTO_IP; for AF_INET6 sockets the level specified
should be IPPROTO_IPV6. For a detailed description of the function, refer
to the programming interfaces in the z/OS Communications Server: IP
Programmer’s Reference for providing classification data to be used in
differentiated services policies.

98 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)
Table 26. Sockets options at the IPPROTO_ICMPV6 level

Socket options
getsockopt()
setsockopt()

Assembler
Callable
Services

C/C++ using
LE

REXX Sockets
Extended
macro/call

ICMP6_FILTER N Y N N

ICMP6_FILTER (used with RAW applications)
The ICMP6_FILTER socket option can be used by a RAW application to
filter out ICMPv6 message types that it does not need to receive. There are
many more ICMPv6 message types than ICMPv4 message types. ICMPv6
provides function comparable to ICMPv4 plus IGMPv4 and ARPv4
functionality. An application may only be interested in receiving a subset of
the messages received for ICMPv6.

This option is enabled or disabled with a setsockopt(). The option value
provides a 256-bit array of message types that should be filtered. To disable
the option, the setsockopt() should be issued with an option length of 0.
This will cause the TCP/IP protocol stack’s default filter to be in effect.

A getsockopt() with this option will return the value set by a setsockopt(). If
a setsockopt() has not been done, the TCP/IP protocol stack’s default filter
will be returned. For more information on default filtering, refer to “ICMP
considerations” on page 103.

Note that the following macros are provided in the LE C/C++ environment
to manipulate the filter value.

void ICMP6_FILTER_SETPASSALL(struct
icmp6_filter *);

Specifies that all ICMPv6 messages
are passed to the application.

void ICMP6_FILTER_SETBLOCKALL(struct
icmp6_filter *);

Specifies that all ICMPv6 messages
are blocked from being passed to the
application.

void ICMP6_FILTER_SETPASS(int, struct
icmp6_filter *);

ICMPv6 messages of type specified in
int should be passed to the
application.

void ICMP6_FILTER_SETBLOCK(int, struct
icmp6_filter *);

ICMPv6 messages of type specified in
int should not be passed to the
application.

void ICMP6_FILTER_WILLPASS(int, const struct
icmp6_filter *);

Returns true if the message type
specified in int will be passed to the
application by the filter pointed to by
the second argument.

void ICMP6_FILTER_WILLBLOCK(int, const struct
icmp6_filter *);

Returns true if the message type
specified in int will not be passed to
the application by the filter pointed to
by the second argument.

Chapter 9. Advanced socket APIs 99

Using ancillary data on sendmsg() and recvmsg()
The sendmsg() API is similar to other socket APIs, such as send() and write(), that
allow an application to send data, but also provides the capability of specifying
ancillary data. Ancillary data allows applications to pass additional option data to the
TCP/IP protocol stack along with the normal data that is sent to the TCP/IP
network.

The recvmsg() API is similar to other socket APIs, such as recv() and read(), that
allow an application to receive data, but also provides the capability of receiving
ancillary data. Ancillary data allows the TCP/IP protocol stack to return additional
option data to the application along with the normal data from the TCP/IP network.

These extensions to the sendmsg() and recvmsg() API are only available to
applications using the following socket API libraries:

v z/OS IBM C/C++ sockets with the z/OS Language Environment(R). For more
information on these APIs refer to the z/OS C/C++ Run-Time Library Reference.

v z/OS UNIX System Services Assembler Callable services socket APIs. For more
information on these APIs refer to z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

For the sendmsg() and recvmsg() APIs most parameters are passed in a message
header input parameter. The mapping for the message header is defined in
socket.h for C/C++ and in the BPXYMSGH macro for users of the UNIX System
Services Assembler Callable services. For simplicity, only the C/C++ version of the
data structures are shown in this section:

The msg_name and msg_namelen parameters are used to specify the destination
sockaddr on a sendmsg(). On a recvmsg() the msg_name and msg_namelen
parameters are used to return the remote sockaddr to the application.

Data to be sent using sendmsg() needs to be described in the msg_iov structure.
On recvmsg() the received data will be described in the msg_iov structure.

The address of the ancillary data is passed in the msg_control field.

The length of the ancillary data is passed in msg_controllen. Note that if multiple
ancillary data sections are being passed, this length should reflect the total length of
ancillary data sections.

msg_flags is not applicable for sendmsg().

struct msghdr {
void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data */
size_t msg_controllen; /* ancillary data length */
int msg_flags; /* flags on received msg */

};

100 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

The msg_control parameter points to the ancillary data. This msg_control pointer
points to the following structure (C/C++ example shown below) that describes the
ancillary data (also defined in socket.h and BPXYMSGH respectively):

The cmsg_len should be set to the length of the cmsghdr plus the length of all
ancillary data that follows immediately after the cmsghdr. This is represented by the
commented out cmsg_data field.

The cmsg_level should be set to the option level (for example, IPPROTO_IPV6).

The cmsg_type should be set to the option name (for example,
IPV6_USE_MIN_MTU).

Interactions between socket options and ancillary data

Understanding hop limit options
The IPv6 header contains a hop limit field that controls the number of hops over
which a datagram can be sent before being discarded. This is similar to the TTL
field in the IPv4 header. An application can influence the value of the hop limit field
with three options:

v IPV6_UNICAST_HOPS socket option (hop limit value to be used for unicast
packets on a socket)

v IPV6_MULTICAST_HOPS socket option (hop limit value to be used for multicast
packets on a socket)

v IPV6_HOPLIMIT ancillary data option on sendmsg() (hop limit value to be used
for single packet)

The hop limit value can also be influenced by a router advertised hop limit, as well
as the globally configured HOPLIMIT parameter value on the IPCONFIG6
statement.

For a unicast packet the precedence order that will be used to determine the hop
limit value for a packet is as follows:

1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.

2. If the IPV6_UNICAST_HOPS socket option is set, use its value.

3. If a router advertised hop limit is known, use its value.

4. If there is a globally configured IPv6 hop limit, use its value.

5. Use the IPv6 default unicast hop limit, 255.

For a multicast packet the precedence order that will be used to determine the hop
limit value for a packet is as follows:

1. If IPV6_HOPLIMIT ancillary data is specified on sendmsg(), use its value.

2. If the IPV6_MULTICAST_HOPS socket option is set, use its value.

3. Use the IPv6 default multicast hop limit, 1.

struct cmsghdr {
size_t cmsg_len; /* data byte count includes hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by u_char cmsg_data[]; */

};

Chapter 9. Advanced socket APIs 101

Understanding options for setting the source address
A UDP or RAW application can influence the setting of the source address with the
bind() IPv6 address or with the IPV6_PKTINFO option.

The precedence order that will be used to determine the source IP address for a
packet is as follows:

1. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero
source IP address, use its value.

2. If the IPV6_PKTINFO socket option is set and contains a nonzero source IP
address, use its value.

3. If the application bound the socket to a specific address, use the Bind address.

4. The TCP/IP protocol stack selects a source address.

Understanding options for specifying the outgoing interface
A UDP or RAW application can influence the outgoing interface for a packet with
the IPV6_PKTINFO option and the IPV6_MULTICAST_IF option. The scope ID field
in the send operation’s destination sockaddr can also affect the outgoing interface.
The options field contains an interface index. The scope ID field contains a zone
index.

When responding to a peer, UDP and RAW applications should use the
sockaddr_in6 structure which they received, and should not zero out the scope ID
field. When sending an unsolicited packet (for example, not responding to one
which was received), the scope ID field should be zero, and UDP and RAW
applications should use the IPV6_PKTINFO or IPV6_MULTICAST_IF options to
select the outgoing interfaces.

The precedence order that will be used to determine the outgoing interface for a
packet is as follows:

1. If the send operation specifies a destination sockaddr structure with a scope ID
then the scope ID will be used if valid (note that a scope ID should only be
provided with a link-local address).

2. If IPV6_PKTINFO ancillary data is specified on sendmsg() with a nonzero
interface index, use its value.

3. If the IPV6_PKTINFO socket option is set and contains a nonzero interface
index, use its value.

4. If this is a multicast packet and the IPV6_MULTICAST_IF socket option is set,
use its value.

Why use RAW sockets?
v An application (for example, PING) can send and receive ICMPv6 messages.

v An application can send and receive datagrams with an IP protocol that the
TCP/IP stack does not support.

The external behavior of IPv6 RAW sockets differs significantly from that of IPv4
RAW sockets, specifically with regards to the following:

v RAW protocol values allowed

v Application visibility of IP headers

v ICMP considerations

v Checksumming data

102 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

RAW protocol values
Protocol values 0, 41, 43, 44, 50, 51, 59 and 60 are not allowed because they
conflict with the following IPv6 extension header types:

v IPPROTO_HOPOPTS (0)

v IPPROTO_IPV6 (41)

v IPPROTO_ROUTING (43)

v IPPROTO_FRAGMENT (44)

v IPPROTO_ESP (50)

v IPPROTO_AH (51)

v IPPROTO_NONE (59)

v IPPROTO_DSTOPTS (60)

Of the RAW protocol values listed, only the following correspond to well-known IPv4
RAW protocols:

v IPPROTO_ESP (50)

v IPPROTO_AH (51)

Application visibility of IP headers
Applications do not see IP headers of incoming datagrams and cannot provide IP
headers with outgoing datagrams.

IPv6 RAW applications can get selected IP header information for incoming and
outgoing datagrams via socket options and ancillary data. For example:

v Applications can set the IPV6_RECVHOPLIMIT socket option in order to get the
hop limit for incoming datagrams in ancillary data. By default, this socket option
is set off.

v Applications can set the IPV6_RECVPKTINFO socket option in order to get the
destination IP address and interface identifier for incoming datagrams in ancillary
data. By default, this socket option is set off.

v Applications can set the IPV6_UNICAST_HOPS socket option in order to set the
hop limit for outgoing unicast datagrams. By default, this socket option is set off
and the configured maximum hop limit or the default hop limit is used.

v Applications can set the IPV6_MULTICAST_HOPS socket option in order to set
the hop limit for outgoing multicast datagrams. By default, this socket option is
set off and a hop limit of 1 is used.

v Applications can use the IPV6_HOPLIMIT ancillary data option to set the hop
limit for an outgoing datagram.

v Applications can use the IPV6_PKTINFO socket option and ancillary data option
to set the source address and interface identifier for outgoing datagrams. By
default, the socket option is set off.

ICMP considerations
IPv6 RAW ICMPv6 applications can set the ICMP6_FILTER socket option to specify
which ICMPv6 message types the socket will receive. By default, the following
message types will be blocked (will not be received):

v ICMP_ECHO

v ICMP_TSTAMP

v ICMP_IREQ

v ICMP_MASKREQ

Chapter 9. Advanced socket APIs 103

v ICMP6_ECHO_REQUEST

v MLD_LISTENER_QUERY

v MLD_LISTENER_REPORT

v MLD_LISTENER_REDUCTION

v ND_ROUTER_SOLICIT

v ND_ROUTER_ADVERT

v ND_NEIGHBOR_SOLICIT

v ND_NEIGHBOR_ADVERT

v ND_REDIRECT

Checksumming data
IPv6 RAW applications can set the IPV6_CHECKSUM socket option in order to
have TCP/IP calculate checksums for outgoing datagrams and verify checksums for
incoming datagrams. By default, this socket option is set off.

104 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Part 4. Advanced topics

© Copyright IBM Corp. 2002 105

106 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 10. Advanced concepts and topics

Tunneling

Tunneling Overview
When IPv6 or IPv6/IPv4 systems are separated from other similar systems that they
wish to communicate with by IPv4 networks, then IPv6 packets must be tunneled
through the IPv4 network. IPv6 packets are tunneled over IPv4 very simply: the
IPv6 packet is encapsulated in an IPv4 datagram, or in other words, a complete
IPv4 header is added to the IPv6 packet. The presence of the IPv6 packet within
the IPv4 datagram is indicated by a protocol value of 41 in the IPv4 header. z/OS
CS cannot be an endpoint in V1R4.

While there are many tunneling protocols which may be used, all share certain
common features and processing:

v The source tunnel endpoint determines that an IPv6 packet needs to be tunneled
over an IPv4 network. How this is determined depends on the tunneling protocol
which is being used. Once this decision has been made, the source tunnel
endpoint adds an IPv4 header to the IPv6 packet. The protocol value in the IPv4
header is set to 41, indicating this is an IPv6 over IPv4 tunnel packet. The source
and destination addresses in the IPv4 header are set based on the tunneling
protocol which is being used.

v At the destination tunnel endpoint, the IPv4 layer receives the IPv4 packet (or
packets, if the IPv4 datagram was fragmented). The IPv4 layer processes the
datagram in the normal way, reassembling fragments if necessary, and notes the
protocol value of 41 in the IPv4 header. IPv4 security checks are made and the
IPv4 header is removed, leaving the original IPv6 packet. The IPv6 packet is
processed as normal.

The following is a subset of the available tunneling protocols, with descriptions of
the more prevalent protocols. Others exist or are in the process of being defined.

© Copyright IBM Corp. 2002 107

The user should select one which is appropriate for their environment.

TCP, UDP, and RAW TCP, UDP, and RAW TCP, UDP, and RAW

IPv6 IPv4 and IPv6 IPv4 and IPv6

IPv6
Application

IPv6
Application

IPv6
Application

IPv6 Interface IPv4 Interface IPv4 Interface IPv4 Interface

IPv4 Network

Tunneling: encapsulate an IPv6
packet in an IPv4 packet and send
the IPv4 packet to the other tunnel
end-point IPv4 address

Network Interfaces Network Interfaces Network Interfaces

IPv6
Network

IPv4
Network

Configured tunnels
Configured tunneling refers to IPv6 over IPv4 tunneling where the IPv4 tunnel
endpoint address is determined by configuration information on the encapsulating
node. The tunnels may be unidirectional or bidirectional. Bidirectional configured
tunnels behave as virtual point-to-point links. For each tunnel, the encapsulating
node must store the tunnel endpoint address. When an IPv6 packet is transmitted
over a tunnel, the tunnel endpoint address configured for that tunnel is used as the
destination address for the encapsulating IPv4 header.

The determination of which packets to tunnel is usually made by routing information
on the encapsulating node. This is typically done via a routing table, which directs
packets based on their destination address using the prefix mask and match
technique.

Configured tunnels may be host-host, host-router, or router-router. Host-host tunnels
allow two IPv6/IPv4 nodes to send IPv6 packets directly to one another without
going through an intermediate IPv6 router. This may be useful if the applications
need to take advantage of IPv6 features which are not available in IPv4.

An IPv6/IPv4 host which is connected to datalinks with no IPv6 routers may use a
configured tunnel to reach an IPv6 router. This tunnel allows the host to
communicate with the rest of the IPv6 Internet. If the IPv4 address of an IPv6/IPv4
router bordering the IPv6 backbone is known, this can be used as the tunnel
endpoint address, and can be used as an IPv6 default route. This default route will
only be used if a more specific route is not known.

Configured tunnels may also be used between routers, allowing isolated IPv6
networks to be connected via an IPv4 backbone. This connectivity can be

Figure 20. Tunneling

108 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

accomplished by arranging tunnels directly with each IPv6 site to which connectivity
is needed, but more typically is done by arranging a tunnel into a larger IPv6
routing infrastructure that can guarantee connectivity to all IPv6 end-user site
networks. One example of this type of IPv6 routing infrastructure is the 6bone.

When using configured tunnels, a peering relationship must be established between
the two IPv6 sites. This requires establishing a technical relationship with the peer
and working through the various low-level details of how to configure tunnels
between the two sites, including answering questions such as what peering protocol
will be used (presumably, an IPv6-capable version of BGP4).

Automatic tunnels
Automatic tunnels provide a simple mechanism to establish IPv6 connectivity
between isolated dual-stack hosts and/or routers. In automatic tunneling, the IPv4
tunnel endpoint is determined from the IPv4 address embedded in the
IPv4-compatible destination address of the IPv6 packet being tunneled. If the
destination IPv6 address is IPv4-compatible, then the packet is sent via automatic
tunneling. If the destination is IPv6-native, the packet cannot be sent via automatic
tunneling. An IPv6-compatible address is identified by a ::/96 prefix and holds an
IPv4 address in the low-order 32 bits. IPv4-compatible addresses are assigned
exclusively to nodes that support automatic tunneling. It is globally unique as long
as the IPv4 address is not from the private IPv4 address space.

When an IPv6 packet is sent over an automatic tunnel, the IPv6 packet is
encapsulated within an IPv4 header as described in “Tunneling Overview” on
page 107. The source IPv4 address is an address of the interface the packet is sent
over, and the destination IPv4 address is the low-order 32 bits of the IPv6
destination address. The packet is always sent in this form, even if the tunnel
endpoint is on an attached link.

Automatic tunneling may be either host-host or router-host. A source host will send
an IPv6 packet to an IPv6 router if possible, but that router may not be able to do
the same and may have to perform automatic tunneling to the destination host
itself. Because of the preference for the use of IPv6 routers rather than automatic
tunneling, the tunnel will always be as short as possible. However, the tunnel will
always extend all the way to the destination host. In order to use a tunnel that does
not extend all the way to the recipient, another tunneling protocol must be used.

There are several issues to be aware of when using automatic tunnels. First, it does
not solve the address exhaustion problem of IPv4, as it requires each tunnel
endpoint to have an IPv4 address from which the IPv6 compatible address is
created. Second, the use of IPv4 compatible addresses cause IPv4 addresses to be
included in the IPv6 routing table, which in turn can cause a dramatic increase in
the size of the IPv6 routing table. Because of these concerns, it is generally
recommended that other tunneling protocols, such as 6to4 tunnels, be used in
preference to automatic tunnels.

6to4 tunnels

6to4 addresses
The IANA has permanently assigned one 13-bit IPv6 Top Level Aggregator (TLA)
identifier under the IPv6 Format Prefix 001 for the 6to4 scheme. Its numeric value is
0x2002, i.e., it is 2002::/16 when expressed as an IPv6 address prefix.

Chapter 10. Advanced concepts and topics 109

The format for a 6to4 address is as follows:

64 bits16 bits 32 bits 16 bits

Interface ID0x0002 V4ADDR Subnet
ID

Thus, this prefix has exactly the same format as normal /48 prefixes assigned
according to other aggregatable global unicast addresses. It can be abbreviated as
2002:V4ADDR::/48. Within the subscriber site it can be used exactly like any other
valid IPv6 prefix, for example, for automated address assignment and discovery for
native IPv6 routing, or for the 6over4 mechanism.

6to4 provides a mechanism to allow isolated IPv6 domains, attached to a wide area
network with no native IPv6 support, to communicate with other such IPv6 domains
with minimal configuration. The idea is to embed IPv4 tunnel addresses into the
IPv6 prefixes so that any domain border router can automatically discover tunnel
endpoints for outbound IPv6 traffic.

The 6to4 transition mechanism advertises a site’s IPv4 tunnel endpoint (to be used
for a dynamic tunnel) in a special external routing prefix for that site. When one site
tries to reach another site, it will discover the 6to4 tunnel endpoint from a DNS
name to address lookup and use a dynamically built tunnel from site to site for
communication. The tunnels are transient in that there is no state maintained for
them, lasting only as long as a specified transaction uses the path.

A 6to4 site identifies one or more routers to run as a dual-mode stack and to act as
a 6to4 router. A globally routable IPv4 address is assigned to the 6to4 router. The
6to4 prefix, which has the 6to4 router’s IPv4 address embedded within it, is then
advertised via the Neighbor Discovery protocol to the 6to4 site, and this prefix is
used by hosts within the site to generate a global IPv6 address.

When one IPv6-enabled host at a 6to4 site tries to access an IPv6-enabled host by
domain name at another 6to4 site, the DNS will return the IPv6 IP address for that
host. The requesting host sends a packet to its nearest router, eventually reaching
a site’s 6to4 router. When the site’s 6to4 router receives the packet and sees that it
must send the packet to another site, and the next hop destination prefix is a
2002:://16 prefix, the IPv6 packet is encapsulated as described in “Tunneling
Overview” on page 107. The source IPv4 address is the one in the requesting site’s
6to4 prefix (which is the IPv4 address of an outgoing interface for one of the site’s
6to4 routers) and the destination IPv4 address is the one in the next hop
destination 6to4 prefix of the IPv6 packet. When the destination site’s 6to4 router
receives the IPv4 packet, the IPv4 header is removed, leaving the original IPv6
packet for local forwarding.

6over4 tunnels

6over4
The Interface Identifier of an IPv4 interface using 6over4 is the 32-bit IPv4 address
of that interface, padded to the left with 0’s, and is 64 bits in length. Note that the

Figure 21. 6to4 address format

110 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Universal/Local bit is 0, indicating that the Interface Identifier is not globally unique.
When the host has more than one IPv4 address in use on the physical interface
concerned, an administrative choice of one of these IPv4 addresses is made.

The IPv6 Link-local address for an IPv4 virtual interface is formed by appending the
Interface Identifier, as defined above, to the prefix FE80::/64.

32 bits32 bits3 bits 45 bits 16 bits

IPv4 address0...........0001 Network Subnet

Site-local and global unicast addresses are generated by prepending a 64-bit prefix
to the 6over4 Interface Identifier. These prefixes may be learned in any of the
normal manners, for example, as part of stateless address autoconfiguration or via
manual configuration.

6over4 is a transition mechanism which allows isolated IPv6 hosts, located on a
physical link which has no directly connected IPv6 router, to use an IPv4 multicast
domain as their virutal local link. A 6over4 host uses an IPv4 address for the
interface in the creation of the IPv6 interface ID, placing the 32-bit IPv4 address in
the low order bits and padding to the left with 0’s for a total of 64 bits. The IPv6
prefix used is the normal IPv6 prefix, and may be manually configured or
dynamically learned via Stateless Address Autoconfiguration.

Since 6over4 creates a virtual link using IPv4 multicast, at least one IPv6 router
using the same method must be connected to the same IPv4 multicast domain if
IPv6 routing to other links is required.

When encapsulating the IPv6 packet, the source IP address for the IPv4 packet is
an IPv4 address from the sending interface of the 6over4 host. The destination IPv4
address is the low-order 32 bits of the IPv6 address of the next-hop for the packet.
Note that the final destination of the packet does not need to be a 6over4 host,
although it may be one.

Application migration and coexistence overview
Many IPv6 stacks support both IPv4 and IPv6 interfaces and are capable of
receiving and sending native IPv4 and IPv6 packets over the corresponding
interfaces. Such a TCP/IP stack is generally referred to as a dual-mode stack IP
node. This does not mean that there are two separate TCP/IP stacks running on
this type of node. It just means that the TCP/IP stack has built-in support for both
IPv4 and IPv6. In this document the term dual mode stack or IP node is a TCP/IP

Figure 22. 6over4 address format

Chapter 10. Advanced concepts and topics 111

stack that supports both IPv4 and IPv6 protocols.

Dual-mode stack IP Host

IPv4-only
Application

TCP, UDP, and RAW

IPv4 and IPv6

Network Interfaces

IPv4 Node IPv6 Node

IPv6-enabled
Application

IPv6
Network

IPv4
Network

For a multihomed dual-mode IP host, it is a likely configuration that the host has
both IPv4 and IPv6 interfaces over which requests for host-resident applications are
received or sent. Older, AF_INET applications are only able to communicate using
IPv4 addresses. IPv6-enabled applications that use AF_INET6 sockets may
communicate using both IPv4 and IPv6 addresses (on a dual mode host). AF_INET
and AF_INET6 applications may thus communicate with one another, but only using
IPv4 addresses.

If the socket libraries on the IPv6-enabled host are updated to support IPv6 sockets
(AF_INET6), applications can be IPv6 enabled. When an application on a dual
mode stack host is IPv6 enabled, the application is able to communicate with both

Figure 23. Dual-mode stack IP host

112 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

IPv4 and IPv6 partners. This is true for both clients and server on a dual mode
stack host.

Appl. on a dual mode host

IPv4-only partner

IPv4-only IPv6-enabled

IPv6-only partner

IPv6-enabling both sockets libraries and applications on dual mode hosts therefore
becomes a migration concern. As soon as IPv6-only hosts are being deployed in a
network, applications on those IPv6-only nodes cannot communicate with the
IPv4-only applications on the dual mode hosts, unless one of multiple migration
technologies are implemented either on intermediate nodes in the network or
directly on the dual mode hosts.

Application migration approaches
The ultimate and preferred migration approach for applications that reside on a
dual-mode TCP/IP host is to IPv6-enable the applications by migrating them from
AF_INET sockets to AF_INET6 sockets.

There are multiple reasons why this approach is not always applicable, such as:

v No access to the source code (vendor product, or source no longer available).

v The sockets API implementation does not yet (or will never) support IPv6.

v Resource availability or prioritization dictates a phased IPv6-enabling where not
all applications can be available in an IPv6-enabled version at the same point in
time where the stack is IPv6-capable.

For those applications that are not or cannot be IPv6-enabled, an alternative
migration strategy is needed. The IETF has identified multiple approaches as
summarized in draft RFC, An Overview of the Introduction of IPv6 in the Internet.

Some of the technologies that are being defined by the IETF are supposed to be
implemented on intermediate nodes that route traffic between IPv4 and IPv6
network segments. Other technologies are intended for implementation on the dual
mode IP nodes themselves.

Translation mechanisms
The key to successful adoption and deployment of IPv6 is how to transition from the
installed IPv4 base. The goal of all transition strategies is to facilitate the partial and
incremental upgrade of hosts, servers, routers, and network infrastructure. There
are many approaches possible, with some of the more likely being described below.
The transition strategy a company chooses to take will vary based on the particular
needs of that company.

This section provides an introduction to a few transition mechanisms which may be
used when migrating to an IPv6 network.

Figure 24. Application communication on a dual-mode host

Chapter 10. Advanced concepts and topics 113

Several migration issues must be addressed when the backbone routing protocol is
IPv4. First, a mechanism is needed to allow communication between islands of IPv6
networks which are only interconnected using the IPv4 backbone. Tunneling of IPv6
packets over the IPv4 network may be used to connect the clouds. Second,
end-to-end communication between IPv4 and IPv6 applications must be enabled.
Several approaches to accomplish this exist; Application Layer Gateways, NAT-PT,
and Bump-in-the-Stack are all possibilities. During the migration phase, it is likely
that a combination of one, multiple, or all of these transition mechanisms may be
used.

Application Layer Gateways (ALGs) allow an IPv6-only applications to communicate
to an IPv4-only peer. Using an ALG, the client connects to the ALG using its native
protocol (IPv4 or IPv6) and the ALG connects to the server using the other protocol
(IPv6 or IPv4, respectively).

SOCKS gateway
A SOCKS gateway is a method of providing an ALG. The SOCKS64 implementation
works as a SOCKS server that relays communication between IPv4 and IPv6 flows.
Servers do not require any changes, but client applications (or the stack on which
the client applications reside) need to be socksified to be able to reach out through
a SOCKS64 server to an IPv6-only partner.

Proxy
Protocol translation involves converting IPv4 packets into IPv6 packets and vice
versa. This translation typically involves some form of network address translation
(NAT) in addition to the protocol translation (PT) function. It may execute in a
specialized node which resides between an IPv4 network and an IPv6 network, or it
may execute in the host which owns the IPv4 application.

Protocol Translation is useful when devices need to communicate but are not using
the same protocol, allowing IPv6-only devices to communicate with IPv4-only
devices. However, protocol translation has several issues which make it a less-than
ideal solution:

v Protocol translation is not foolproof. It is difficult to determe exactly how long to
keep the mappings between the real IPv6 address and the locally mapped IPv4
address around. Eventually, an address is going to be reused before all servers
have stopped accessing the address.

v Some applications may use the remote IP address as a means of performing a
security check. Unless AH or an IPSec tunnel is used then this really is not
foolproof, but it is still done. If the IPv4 address is a locally mapped address then
any checks such as this are broken.

v Displays and traces of the remote IP address will be meaningless. Today, many
applications put out messages, traces, and so on containing the IP address of
the remote client.

v All DNS queries for the IPv4-mapped address must flow through the node which
performed the NAT function. The DNS resolver and/or name server at this node,
as well as the TCP/IP stack, must maintain a mapping between the IPv4 address
and IPv6 address.

v Not all IPv6 protocols have IPv4 equivalents, and vice versa. As such, it may not
be possible to translate the content of an IPv4 packet into an equivalent IPv6
packet, or an IPv4 packet into an equivalent IPv6 packet.

Stateless IP/ICMP Translation Algorithm (SIIT)
This algorithm translates between IPv4 and IPv6 packet headers (including ICMP
headers) in separate translator boxes in the network without requiring any

114 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

per-connection state in those boxes. SIIT can be used as part of a solution that
allows IPv6 hosts, which do not have permanently assigned IPv4 addresses, to
communicate with IPv4-only hosts.

For more detailed information on SIIT, refer to Stateless IP/ICMP Translator (SITT),
RFC 2765.

Network Address Translation - Protocol Translation (NAT-PT)
Protocol translation may occur at a specialized node which resides between IPv4
and IPv6 networks. This node is typically referred to as a NAT-PT device as it must
both translate between the IPv4 and IPv6 addresses as well as between the IPv4
and IPv6 protocols.

An NAT-PT node plays a similar role to an ALG. Both nodes allow IPv4-only
applications to communicate with IPv6-only peers, and both reside in similar places
in the network. However, each takes a different approach to accomplish a similar
goal.

SOCKS64 is a proxy solution and requires client applications to be updated to use
SOCKS64. NAT-PT is not a proxy and requires no changes to either the client or
server. Based solely on this, it would seem as though NAT-PT is a superior solution.
However, due to the limitations of NAT-PT and familiarity with SOCKS, it is actually
more likely that SOCKS64 will be used for allowing IPv4-only applications to
communicate with IPv6-only peers.

For more detailed information on NAT-PT, refer to Network Address Translation -
Protocol Translation, RFC 2766.

Chapter 10. Advanced concepts and topics 115

116 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Chapter 11. IPv6 support tables

IPv6 standards supported on z/OS V1R4
Note that RFCs are not implemented in their entirety.

Table 27. Supported IPv6 standards on z/OS CS V1R4

Standard RFC or Internet Draft

Internet Protocol, Version 6 (IPv6) Specification 2460

IP Version 6 Addressing Architecture 2373

An IPv6 Aggregatable Global Unicast Address Format 2374

Stateless address autoconfiguration 2462

Path MTU discovery 1981

Internet Control Message Protocol (ICMPv6) for IPv6 2463

Neighbor discovery 2461

Default address selection draft-ieft-ipngwg-default-addr-
select-06

Multicast listener discovery - host 2710

IPv6 Router Alert Option 2711

Basic Socket Interface Extensions for IPv6 draft-ieft-ipngwg-rfc2553bis-05

Advanced Sockets API for IPv6 2292

DNS Extensions to support IP version 6 1886

DNS Extensions to Support IPv6 Address Aggregation
and Renumbering

2874

FTP Extensions for IPv6 and NATs 2428

Transmission of IPv6 Packets over Ethernet Networks 2464

z/OS specific features
The following tables summarize z/OS TCP/IP features and the level of support
provided in an IPv6 network. It is anticipated that many more of these features will
be enabled for IPv6 support in subsequent releases of the z/OS Communications
Server.

Table 28. Link-layer device support

Link-layer device support IPv4
support

IPv6
support

Comments

OSA-Express in QDIO
mode

Y Y Fast and Gigabit Ethernet support for
IPv6 traffic is configured via an
INTERFACE statement of type
IPAQENET6

CTC Y N

LCS Y N

CLAW Y N

CDLC (3745/3746) Y N

SNALINK LU0 and LU6.2 Y N

© Copyright IBM Corp. 2002 117

Table 28. Link-layer device support (continued)

Link-layer device support IPv4
support

IPv6
support

Comments

X.25 NPSI Y N

NSC HyperChannel Y N

MPC Point-Point Y N

ATM Y N

HiperSockets Y N

XCF Y N

Table 29. Virtual IP Addressing support

Virtual IP Addressing
support

IPv4 support IPv6 support Comments

Virtual Device/Interface
Configuration for static VIPA

Y Y

Table 30. Sysplex support

Sysplex support IPv4 support IPv6 support Comments

Sysplex Distributor Y N

Dynamic VIPA Y N

Dynamic XCF Y N

Table 31. IP routing functions

IP routing functions IPv4 support IPv6 support Comments

Dynamic Routing - OSPF Y N

Dynamic Routing - RIP Y N

Static Route Configuration
via BEGINROUTE statement

Y Y

Static Route Configuration
via GATEWAY statement

Y N

Multipath Routing Groups Y Y

Table 32. Misc. IP/IF-layer functions

Misc. IP/IF-layer functions IPv4 support IPv6 support Comments

Path MTU Discovery Y Y

Configurable Device or
Interface Recovery Interval

Y Y

Link-Layer Address
Resolution

Y Y

ARP/Neighbor Cache
PURGE Capability

Y Y

Datagram Forwarding
Enable/Disable

Y Y

118 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Table 33. Transport-layer functions

Transport-layer functions IPv4 support IPv6 support Comments

Fast Response Cache
Accelerator

Y N

Enterprise Extender Y N

Server-BIND Control Y Y

UDP Checksum
Disablement Option

Y N

Table 34. Network management and accounting functions

Network management and
accounting Functions

IPv4 support IPv6 support Comments

SNMP Y N

Policy-Based Networking Y N

SMF Y Y

Table 35. Security functions

Security functions IPv4 support IPv6 support Comments

IPSec Y N

IP Filtering Y N

Network Access Control Y N

Stack and Port Access
Control

Y Y

Intrusion Detection Services Y N

Applications not enabled for IPv6
Table 36. V1R4 applications not enabled for IPv6

Server Applications IPv4
support

IPv6
support

SMTP/NJE server Y N

TN3270(E) server Y N

Rlogind server Y N

MVS rexecd/rshd server Y N

MVS Miscellaneous server Y N

Sendmail server/client Y N

Popper Y N

CICS sockets listener Y N

ISAKMP server Y N

NDB server Y N

SNMPD server Y N

MVS LPD server Y N

Syslogd server Y N

TFTPD server Y N

Chapter 11. IPv6 support tables 119

Table 36. V1R4 applications not enabled for IPv6 (continued)

Server Applications IPv4
support

IPv6
support

DHCPD server Y N

TIMED server Y N

NCS LLBD and GLBD servers Y N

ONC/RPC MVS Portmapper Y N

ONC/RPC UNIX Portmapper Y N

Orouted server Y N

OMPROUTE server Y N

NCPROUTE Y N

NPF Y N

Pagent Y N

RSVP daemon Y N

TRMD daemon Y N

UNIX named (BIND 4.9.3 based) Y N

Client Applications

TSO telnet client Y N

TSO rexec client Y N

TSO rsh client Y N

TSO lpr client Y N

Command-type Applications

TSO nslookup Y N

UNIX nslookup (BIND 4.9.3 based) Y N

UNIX nsupdate (BIND 4.9.3 based) Y N

TSO lprm Y N

TSO dig Y N

UNIX dig Y N

TSO rpcinfo Y N

UNIX rpcinfo Y N

120 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Appendix A.

Related protocol specifications (RFCs)
This appendix lists the related protocol specifications for TCP/IP. The Internet
Protocol suite is still evolving through requests for comments (RFC). New protocols
are being designed and implemented by researchers and are brought to the
attention of the Internet community in the form of RFCs. Some of these protocols
are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

You can see Internet drafts at http://www.ietf.org/ID.html. See “Internet Drafts” on
page 128 for draft RFCs implemented in z/OS V1R4 Communications Server.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at the following Web address: http://www.rfc-editor.org/rfc.html.

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

© Copyright IBM Corp. 2002 121

http://www.ietf.org/ID.html
http://www.rfc-editor.org/rfc.html

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

855 Telnet Option Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

858 Telnet Suppress Go Ahead Option J.B. Postel, J.K. Reynolds

859 Telnet Status Option J.B. Postel, J.K. Reynolds

860 Telnet Timing Mark Option J.B. Postel, J.K. Reynolds

861 Telnet Extended Options—List Option J.B. Postel, J.K. Reynolds

862 Echo Protocol J.B. Postel

863 Discard Protocol J.B. Postel

864 Character Generator Protocol J.B. Postel

877 Standard for the Transmission of IP Datagrams over Public Data Networks
J.T. Korb

885 Telnet End of Record Option J.B. Postel

896 Congestion Control in IP/TCP Internetworks J. Nagle

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C. Mogul, M.
Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl, E.J.
Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1006 ISO Transport Service on top of the TCP Version 3 M.T.Rose, D.E. Cass

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1011 Official Internet Protocols J. Reynolds, J. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell,
J.S. Quarterman

1032 Domain Administrators Guide M.K. Stahl

122 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks
J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol
Specification K. Hardwick, J. Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L.
Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun
Microsystems Incorporated

1058 Routing Information Protocol C.L. Hedrick

1060 Assigned Numbers J. Reynolds, J. Postel

1073 Telnet Window Size Option D. Waitzman

1079 Telnet Terminal Speed Option C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1096 Telnet X Display Location Option G. Marcy

1101 DNS encoding of network names and other types P.V. Mockapetris

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R.T. Braden

1123 Requirements for Internet Hosts—Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-Based
Internets K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP) J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1158 Management Information Base for Network Management of TCP/IP-based
internets: MIB-II M.T. Rose

1179 Line Printer Daemon Protocol The Wollongong Group, L. McLaughlin III

1180 TCP/IP Tutorial T.J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris, (Updates RFC 1034, RFC 1035)

1184 Telnet Linemode Option D. Borman

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie, J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

1191 Path MTU Discovery J. Mogul, S. Deering

Appendix A. 123

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked “Experienced
Internet User” Questions G.S. Malkin, A.N. Marine, J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

1236 IP to X.121 Address Mapping for DDN L. Morales, P. Hasse

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
S. Willis, J. Burruss

1270 SNMP Communications Services F. Kastenholz, ed.

1321 The MD5 Message-Digest Algorithm R. Rivest

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions G.S. Malkin, A.N. Marine

1340 Assigned Numbers J.K. Reynolds, J.B. Postel

1348 DNS NSAP RRs B. Manning

1349 Type of Service in the Internet Protocol Suite P. Almquist

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis,
D. Robinson, R. Ullmann

1363 A Proposed Flow Specification C. Partridge

1372 Telnet Remote Flow Control Option D. Borman, C. L. Hedrick

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

124 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

1388 RIP Version 2—Carrying Additional Information G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol D. Haskin

1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

1416 Telnet Authentication Option D. Borman, ed.

1464 Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

1535 A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S.Miller

1537 Common DNS Data File Configuration Errors P. Beertema

1540 IAB Official Protocol Standards J.B. Postel

1571 Telnet Environment Option Interoperability Issues D. Borman

1572 Telnet Environment Option S. Alexander

1577 Classical IP and ARP over ATM M. Laubach

1583 OSPF Version 2 J. Moy

1591 Domain Name System Structure and Delegation J. Postel

1592 Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

1594 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions A.N. Marine, J. Reynolds, G.S. Malkin

1695 Definitions of Managed Objects for ATM Management Version 8.0 Using
SMIv2 M. Ahmed, K. Tesink

1706 DNS NSAP Resource Records B. Manning, R. Colella

1713 Tools for DNS debugging A. Romao

1723 RIP Version 2—Carrying Additional Information G. Malkin

1766 Tags for the Identification of Languages H. Alvestrand

1794 DNS Support for Load Balancing T. Brisco

1832 XDR: External Data Representation Standard R. Srinivasan

1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

1876 A Means for Expressing Location Information in the Domain Name System
C. Davis, P. Vixie, T. Goodwin, I. Dickinson

1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

1901 Introduction to Community-Based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

Appendix A. 125

1902 Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1904 Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1905 Protocols Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1908 Coexistence between Version 1 and Version 2 of the Internet-Standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1912 Common DNS Operational and Configuration Errors D. Barr

1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

1939 Post Office Protocol-Version 3 J. Myers, M. Rose

1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

1982 Serial Number Arithmetic R. Elz, R. Bush

1995 Incremental Zone Transfer in DNS M. Ohta

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P.
Vixie

2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

2011 SNMPv2 Management Information Base for the Internet Protocol Using
SMIv2 K. McCloghrie

2012 SNMPv2 Management Information Base for the Transmission Control
Protocol Using SMIv2 K. McCloghrie

2013 SNMPv2 Management Information Base for the User Datagram Protocol
Using SMIv2 K. McCloghrie

2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

2065 Domain Name System Security Extensions D. Eastlake, C. Kaufman

2096 IP Forwarding Table MIB F. Baker

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

126 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

2137 Secure Domain Name System Dynamic Update D. Eastlake

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

2168 Resolution of Uniform Resource Identifiers using the Domain Name System
R. Daniel, M. Mealling

2178 OSPF Version 2 J. Moy

2181 Clarifications to the DNS Specification R. Elz, R. Bush

2205 Resource ReSerVation Protocol (RSVP) Version 1 R. Braden, L. Zhang, S.
Berson, S. Herzog, S. Jamin

2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

2211 Specification of the Controlled-Load Network Element Service J. Wroclawski

2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

2215 General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

2228 FTP Security Extensions M. Horowitz, S. Lunt

2230 Key Exchange Delegation Record for the DNS R. Atkinson

2233 The Interfaces Group MIB Using SMIv2 K. McCloghrie, F. Kastenholz

2240 A Legal Basis for Domain Name Allocation O. Vaughn

2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

2320 Definitions of Managed Objects for Classical IP and ARP over ATM Using
SMIv2 M. Greene, J. Luciani, K. White, T. Kuo

2328 OSPF Version 2 J. Moy

2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.
Oglesby

2352 A Convention for Using Legal Names as Domain Names O. Vaughn

2355 TN3270 Enhancements B. Kelly

2373 IP Version 6 Addressing Architecture R. Hinden, M. O’Dell, S. Deering

2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O’Dell,
S. Deering

2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon,
R. Elz

2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

2460 Internet Protocol, Version 6 (IPv6) S pecification S. Deering, R. Hinden

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

Appendix A. 127

2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers K. Nichols, S. Blake, F. Baker, D. Black

2535 Domain Name System Security Extensions D. Eastlake

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake

2553 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2571 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

2572 Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

2574 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2575 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2578 Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

2640 Internationalization of the File Transfer Protocol B. Curtin

2665 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick,
J. Johnson

2672 Non-Terminal DNS Name Redirection M. Crawford

2710 Multicast Listener Discovery (MLD) for IPv6S. Deering, W. Fenner, B.
Haberman

2711 IPv6 Router Alert OptionC. Partridge, A. Jackson

2758 Definitions of Managed Objects for Service Level Agreements Performance
Monitoring K. White

2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake, B. Wellington

2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.
Crawford, C. Huitema

2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

2946 Telnet Data Encryption Option T. Ts’o

2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o, ed.

3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

Internet Drafts
Several areas of IPv6 implementation include elements of the following Internet
drafts and are subject to change during the RFC review process.

128 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Advanced Sockets API for IPv6
W. Richard Stevens, Matt Thomas, Erik Nordmark, Tatuya Jinmei

Basic Socket Interface Extensions for IPv6
R.E. Gilligan, S. Thomson, J. Bound, J. McCann, W. R. Stevens

Default Address Selection for IPv6
R. Draves

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification

A. Conta, S. Deering

IP Version 6 Addressing Architecture
R. Hinden, S. Deering

Appendix A. 129

130 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Appendix B.

Information APARs
This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the manuals listed
below. Documents updated for V1R4 are complete except for the updates
contained in the information APARs that may be issued after V1R4 documents
went to press.

2. Information APARs are predefined for z/OS V1R4 Communications Server and
may not contain updates.

3. Information APARs for OS/390 documents are in the document called OS/390
DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

4. Information APARs for z/OS documents are in the document called z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP documents
Table 37 lists information APARs for IP documents.

Table 37. IP information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP API Guide ii13255 ii12861 ii12371 ii11635

IP CICS Sockets Guide ii13257 ii12862 ii11626

IP Configuration ii11620
ii12068
ii12353
ii12649
ii13018

IP Configuration Guide ii13244 ii12498
ii13087

ii12362
ii12493
ii13006

IP Configuration Reference ii13245 ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii13249 ii12503 ii12366
ii12495

ii11628

IP Messages Volume 1 ii13250 ii12857
ii13229

ii12367 ii11630
13230

IP Messages Volume 2 ii13251 ii12858 ii12368 ii11631

IP Messages Volume 3 ii13252 ii12859 ii12369
12990

ii11632
ii12883

IP Messages Volume 4 ii13253 ii12860

© Copyright IBM Corp. 2002 131

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Table 37. IP information APARs (continued)

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP Migration ii13242 ii12497 ii12361 ii11618

IP Network and Application Design
Guide

ii13243

IP Network Print Facility ii12864 ii11627

IP Programmer’s Reference ii13256 ii12505 ii11634

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

IP User’s Guide ii12365
ii13060

ii11625

IP User’s Guide and Commands ii13247 ii12501 ii12365
ii13060

ii11625

IP System Admin Guide ii13248 ii12502

Quick Reference ii13246 ii12500 ii12364

Information APARs for SNA documents
Table 38 lists information APARs for SNA documents.

Table 38. SNA information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and z/OS CS

V1R1

CS for OS/390
2.8

Anynet SNA over TCP/IP ii11922

Anynet Sockets over SNA ii11921

CSM Guide

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

SNA Customization ii13240 ii12872 ii12388 ii11923

SNA Diagnosis ii13236 ii12490
ii13034`

ii12389 ii11915

SNA Messages ii13238 ii12491 ii12382
ii12383

ii11916

SNA Network Implementation Guide ii13234 ii12487 ii12381 ii11911

SNA Operation ii13237 ii12489 ii12384 ii11914

SNA Migration ii13233 ii12486 ii12386 ii11910

SNA Programming ii13241 ii13033 ii12385 ii11920

Quick Reference ii13246 ii12500 ii12364 ii11913

SNA Resource Definition Reference ii13235 ii12488 ii12380
ii12567

ii11912
ii12568

SNA Resource Definition Samples

SNA Data Areas ii13239 ii12492 ii12387 ii11617

Other information APARs
Table 39 on page 133 lists information APARs not related to documents.

132 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Table 39. Non-document information APARs

Content Number

OMPROUTE ii12026

iQDIO ii11220

index of recomended maintenace for VTAM® ii11220

CSM for VTAM ii12657

CSM for TCP/IP ii12658

AHHC, MPC, and CTC ii01501

DLUR/DLUS for z/OS V1R2 ii12986

Enterprise Extender ii12223

Generic resources ii10986

HPR ii10953

MNPS ii10370

Performance ii11710
ii11711
ii11712

Appendix B. 133

134 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Appendix C.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 2002 135

136 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2002 137

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

138 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Notices 139

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
eServer
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

140 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
z/OS.e
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/sites/corporate/tradmarx.htm .

Other company, product, and service names may be trademarks or service marks
of others.

Notices 141

http://www.intel.com/sites/corporate/tradmarx.htm

142 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Index

A
A6 records 55
AAAA records 55
accessibility features 135
address resolution, in IPv6 28
address states

deprecated 20
preferred 20
tentative 19
unavailable 20

Advanced socket APIs 95
AF_INET socket applications

and dual-mode stack 40
and IPv4-only stack 40

AF_INET6 socket applications
and dual-mode stack 40
and IPv4-only stack 40
and IPv6-only stack 40

AF_INET6 support, enabling 52
aggregatable global addresses, unicast 13
ALG 38
ancillary data 95, 100, 101
APIs 67
APIs, advanced 95
Application Layer Gateway (ALG) 38

and z/OS CS TCP/IP 39
ARP, in IPv4 24
authentication headers 21
autoconfiguration

stateful 4
stateless 4, 29

recommendations 61
steps 30

automation impacts
due to message changes 48
due to netstat changes 48

autonomous flag, in router advertisement 26

B
Basic socket API extensions for IPv6 71

address conversion functions 79
Address families 71
address testing macros 79
Design considerations 71
interface identification 80
name and address resolution functions 72
name translation 73
Protocol families 71
socket options 80
special IP addresses 72

BPXPRMxx
and enabling IPv6 support 50
CINET IPv4-only sample 51
CINET IPv4/IPv6 dual-mode sample 51
IPv4-only sample 50
IPv4/IPv6 dual-mode sample 50

broadcast 24

C
Common INET

and AF_INET6 support 41
considerations 41
recommendations 43

COMMONSEARCH statement, in resolver setup file 53
Communications Server for z/OS, online

information xiii

D
DAD 28
data tracing 59
default address selection 32
default destination address selection 32

rules 32
default source address selection

rules 34
deprecated, address state 20
DHCPv6 5
disability, physical 135
DNS 54

and VIPAs, recommendations 62
setting up 55

DNS, online information xiii
DNS, recommendations 62
documents, licensed xiv
dual-mode stack 36

and IPv4 application 37
and IPv6 application 36

Duplicate Address Detection (DAD) 28
and loopback addresses 28
and VIPA 28, 31
how to disable 28
processing steps 28

dynamic routes 22

E
Encapsulating Security Payload headers 21
exits 56
extension headers 21

F
fragmentation 21

support 6, 22
FTP exits 56
FTP server 47

G
getaddrinfo 73
gethostbyaddr 78

© Copyright IBM Corp. 2002 143

gethostbyname 73
getnameinfo 78
getservbyname 73
getservbyport 78

I
IBM Software Support Center, contacting xv
ICMPv4 messages 24
ICMPv6 23

message types 24
IGMP, in IPv4 24
INET

and dual-mode IPv4/IPv6 stack 41
and IPv4-only stack 40

inetd 56
configuration file 56

Inetd server 47
information APARs for IP-related documents 131
information APARs for non- document information 132
information APARs for SNA-related documents 132
interface identifiers, in IPv6 unicast address 16
Internet, finding z/OS information online xiii
ip6.arpa 55
ip6.int 55
IPCS 59
IPv4-mapped IPv6 address 16
IPv6

applications not enabled 119
Basic socket API extensions 71
supported standards 117
z/OS supported features 117

IPv6 address
anycast 19
multicast 17
textual representation 9
types 10

global unicast aggregatable 10
link-local unicast 10
loopback 10
multicast 10
site-local unicast 10
unspecified 10

unicast 12
IPv6 address space 3, 10
IPv6 header 4

header options 4
IPv6 prefix

textual representation 10
IPv6, enabling applications for 85

K
Kerberos

and FTP client 48
and FTP server 47
and orshd server 47
and otelnetd server 47

keyboard 135

L
license, patent, and copyright information 137
licensed documents xiv
local use address, unicast 13
loopback address

and DAD 28
loopback address, unicast 15

M
MLD 24
multicast 17

groups
group ID 18

scope 17
Multicast Listener Discovery

listener function 24
query message 25
router function 24

Multicast Listener Discovery (MLD) 23, 24
multicasting 24
multipath routes, considerations 23

N
NAT 39
NAT-PT 115
Neighbor Discovery (NeD) 5, 23, 25

Address Resolution 25, 28
Duplicate Address Detection (DAD) 25
parameter discovery 5
prefix discovery 5
Reachability Detection 25

neighbor unreachability detection 29
Netstat 57
Network Address Translation (NAT) 39

O
OBEYFILE, and autoconfiguration 30
on-link flag, in router advertisement 26
orexec 56
orexecd 56
orexecd server 47
orshd 56
orshd server 47
OSA-Express

in QDIO mode 47
OSPF 22
otelnetd 56
otelnetd server 47

P
packet tracing 59
path MTU discovery 22
Ping 59
preferred, address state 20
prefix information options

autonomous flag 26

144 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

prefix information options (continued)
on-link flag 26

Proxy 114

Q
QoS

and flow label 7

R
RAW sockets 102
redirect messages 5
redirect processing

IGNOREREDIRECT on IPCONFIG6 27
Resolver 52

and DNS 54
Resolver configuration

files 53
search orders 53

RFC (request for comment)
list of 121

RFC (request for comments)
accessing online xiii

RIP 22
route selection 23
router advertisements 25

prefix information options 26
autonomous flag 26
on-link flag 26

routing 22
and vary obey command 23

S
scope 11

multicast 17
scope zone 11
scope zone index 12
scope zones 11
security considerations 49
shortcut keys 135
SIIT 114
SMF records 56
SNMP 57
socket APIs 67

and IPv6 support 67
socket APIs, advanced 95
SOCKS 39, 114
SOCKS server 39
SOCKS64 39, 114
source VIPA, recommendation 63
SOURCEVIPA, for IPv6 31
static routes

BEGINROUTES profile statement 22
GATEWAY profile statement 22

static routes, recommendation 63

T
takeover function, interface 30
TCP/IP

online information xiii
protocol specifications 121

tentative, address state 19
Traceroute 36, 59
tracing

data 59
packet 59

trademark information 140
Translation mechanisms 113

NAT-PT 115
Proxy 114
SIIT 114
SOCKS 114

Tunneling 107
6over4 tunnels 110
6to4 tunnels 109
and z/OS/CS 36
automatic tunnels 109
configured tunnels 108

U
unavailable, address state 20
unicast 12
unspecified address, unicast 16
user exits 56
user interface

ISPF 135
TSO/E 135

V
vary obey considerations, in router advertisements 27
VIPA

and Duplicate Address Detection(DAD) 28, 31
and prefixes 31
and source address selection 34
how to get addresses 31
interface identifier

recommendations 62
network prefix

recommendations 61
static

recommendations 61
VTAM, online information xiii

Z
z/OS, documentation library listing xvi
z/OS, listing of documentation available 131
zone index 12

Index 145

146 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Communicating Your Comments to IBM
If you especially like or dislike anything about this document, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. However, the comments you
send should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by mail, use the RCF at the back of this
document.

v If you prefer to send comments by FAX, use this number: 1-800-254-0206

v If you prefer to send comments electronically, use this network ID:
usib2hpd@vnet.ibm.com

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2002 147

148 z/OS V1R4.0 CS: IPv6 Network and Appl Design Guide

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
IPv6 Network and Application Design Guide
Version 1 Release 4

Publication No. SC31-8885-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8885-00

SC31-8885-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G71A/Bldg 503
Research Triangle Park, NC
U.S.A.
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01 and 5655-G52

Printed in U.S.A.

SC31-8885-00

Spine information:

��� z/OS Communications Server
z/OS V1R4.0 CS: IPv6 Network and Appl Design
Guide

Version 1
Release 4

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Where to find related information on the Internet
	DNS web sites

	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	Using LookAt to look up message explanations
	How to contact IBM service
	z/OS Communications Server information
	Softcopy information
	z/OS Communications Server library
	Redbooks
	Related information
	Determining if a publication is current

	Part 1. IPv6 Overview
	Chapter 1. Introduction
	Expanded routing and addressing
	Hierarchical addressing and routing infrastructure
	Simplified IP header format
	Improved support for options
	Address autoconfiguration
	New protocol for neighbor node interaction
	Comparison of IPv6 and IPv4 characteristics
	Dual-mode stack support

	Chapter 2. IPv6 addressing
	Textual representation of IPv6 addresses
	Textual representation of IPv6 prefixes
	IPv6 address space
	IPv6 addressing model
	Scope zones
	Categories of IPv6 addresses
	Unicast IPv6 addresses
	Aggregatable global addresses
	Local use address
	Loopback address
	Unspecified address
	IPv4-mapped IPv6 addresses
	IPv6 interface identifiers

	Multicast IPv6 Addresses
	Multicast address format
	Multicast scope
	Multicast groups

	Anycast IPv6 Addresses

	Typical IPv6 addresses assigned to a node
	IPv6 address states
	Tentative
	Deprecated
	Preferred
	Unavailable

	Chapter 3. IPv6 protocol
	Extension headers
	Fragmentation in an IPv6 network
	Fragmentation and UDP/RAW

	Path MTU discovery
	IPv6 routing
	Considerations for route selection
	Considerations for multipath routes
	How does a vary obey command affect routes?

	ICMPv6
	Multicasting
	Multicast Listener Discovery (MLD)

	Neighbor discovery (NeD)
	Router advertisements
	Route timeouts
	Vary obey considerations

	Redirect processing
	Duplicate Address Detection (DAD)
	Address resolution
	Neighbor unreachability detection

	Assigning IP addresses to interfaces
	Stateless address autoconfiguration
	Autoconfiguration considerations

	IP address takeover following an interface failure
	How to get addresses for VIPAs
	VIPA recommendations

	Default address selection
	Default destination address selection
	Default source address selection
	VIPA considerations with source address selection

	Migration and coexistence
	How to enable IPv6 communication between IPv6 islands in an IPv4 world
	Tunneling

	How to enable end-to-end communication between IPv4 and IPv6 applications
	Dual-mode stack
	Application Layer Gateways (ALG) and protocol translation

	Considerations for configuring z/OS for IPv6
	IPv6 stack support
	IPv4-only stack
	IPv6-only stack
	Dual-mode stack

	INET considerations
	IPv4-only stack
	Dual-mode IPv4/IPv6 stack

	Common INET considerations
	Enabling AF_INET6 support in a Common INET environment
	Disabling AF_INET6 support in a Common INET environment
	Supporting a mixture of dual-mode stacks and IPv4-only stacks
	Configuration recommendations for a Common INET environment

	Part 2. IPv6 enablement
	Chapter 4. Configuring support for z/OS V1R4
	Before you begin
	Ensure important features are supported over IPv6
	Assess automation and application impacts due to netstat and message changes
	Determine how remote sites will connect to the local host
	Avoid using IP addresses for identifying remote hosts
	Considerations when using BIND parameter on PORT statement
	Security considerations
	Application programming considerations

	How to enable IPv6 support
	Enabling AF_INET6 support in z/OS Communications Server
	Configuring z/OS CS IPv6 support

	Resolver
	Resolver configuration
	IPv4-only configuration statements
	IPv6/IPv4 configuration statements
	Steps for implementing the resolver functions

	Resolver communications with the Domain Name System (DNS)

	DNS
	Resolving names into IPv6 addresses
	AAAA records
	A6 records

	Resolving IPv6 addresses into names
	ip6.arpa
	ip6.int

	DNS setup

	User exits
	Which applications started with inetd are IPv6 enabled?
	What has to be changed?

	How does IPv6 affect SMF records?
	How does IPv6 affect SNMP?
	Monitoring the TCP/IP network
	How does IPv6 affect Netstat?
	Control of output format
	What has changed?

	How does IPv6 affect Ping and Traceroute?

	Diagnosing problems
	How does IPv6 affect IPCS?
	How does IPv6 affect packet and data tracing?

	Chapter 5. Configuration recommendations
	Connecting to an IPv6 Network
	IPv6 address assignment
	Use stateless address autoconfiguration for physical interfaces
	Use static VIPAs
	Selecting the network prefix
	Selecting the interface identifier
	Effects of site renumbering on static VIPAs

	Update DNS definitions
	Include static VIPAs in DNS
	Define both IPv4-only host names and IPv4/IPv6 host names

	Use source VIPA
	Define static routes to improve network path selection
	Use subnet routes instead of host routes
	Use the link-local address of gateway router
	Effects of site renumbering on static routes

	Connecting to non-local IPv4 locations
	IPv6-only application access to IPv4-only application

	Part 3. Application enablement
	Chapter 6. API support
	UNIX Socket APIs
	z/OS UNIX Assembler Callable Services
	z/OS C sockets

	Native TCP/IP socket APIs
	Sockets Extended macro API
	Sockets Extended Call Instruction API
	REXX sockets
	CICS sockets
	IMS sockets
	Pascal API
	TCP/IP C/C++ Sockets

	Chapter 7. Basic Socket API extensions for IPv6
	Introduction
	Design considerations
	Protocol families
	Address families
	Special IP addresses

	Name and address resolution functions
	Protocol-independent nodename and service name translation
	Socket address structure to host name and service name
	Address conversion functions
	Address testing macros

	Interface identification
	Socket options to support IPv6 (IPPROTO_IPV6 level)
	Option to control sending of unicast packets
	Options to control sending of multicast packets
	Options to control receiving of multicast packets
	Socket option to control IPv4 and IPv6 communications
	Socket options for SOL_SOCKET, IPPROTO_TCP and IPPROTO_IP levels

	Chapter 8. Enabling an application for IPv6
	Changes to enable IPv6 support
	Support for unmodified applications
	Application awareness of whether system is IPv6 enabled
	Socket address (sockaddr_in) structure changes
	Address conversion functions
	Resolver API processing
	Special IPv6 addresses
	Passing ownership of sockets across applications using givesocket and takesocket APIs
	Using multicast and IPv6
	IP addresses may not be permanent
	Including IP addresses in the data stream
	Example of an IPv4 TCP server program
	Example of the simple TCP server program enabled for IPv6

	Chapter 9. Advanced socket APIs
	Controlling the content of the IPv6 packet header
	Socket options and ancillary data to support IPv6 (IPPROTO_IPV6 level)
	Option to request that minimum MTU size be used
	Options to control the sending of packets for UDP and RAW applications
	Options to provide information about received packets
	Option to provide checksum processing for RAW applications
	Option to provide QoS classification data

	Socket option to support ICMPv6 (IPPROTO_ICMPV6 level)

	Using ancillary data on sendmsg() and recvmsg()
	Interactions between socket options and ancillary data
	Understanding hop limit options
	Understanding options for setting the source address
	Understanding options for specifying the outgoing interface

	Why use RAW sockets?
	RAW protocol values
	Application visibility of IP headers
	ICMP considerations
	Checksumming data

	Part 4. Advanced topics
	Chapter 10. Advanced concepts and topics
	Tunneling
	Tunneling Overview
	Configured tunnels
	Automatic tunnels
	6to4 tunnels
	6to4 addresses

	6over4 tunnels
	6over4

	Application migration and coexistence overview
	Application migration approaches
	Translation mechanisms
	SOCKS gateway
	Proxy
	Stateless IP/ICMP Translation Algorithm (SIIT)
	Network Address Translation - Protocol Translation (NAT-PT)

	Chapter 11. IPv6 support tables
	IPv6 standards supported on z/OS V1R4
	z/OS specific features
	Applications not enabled for IPv6

	Appendix A.
	Related protocol specifications (RFCs)
	Internet Drafts

	Appendix B.
	Information APARs
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix C.
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks

	Index
	
	Communicating Your Comments to IBM

	Readers’ Comments — We'd Like to Hear from You

